Evaluate
\frac{149}{15}\approx 9.933333333
Factor
\frac{149}{3 \cdot 5} = 9\frac{14}{15} = 9.933333333333334
Share
Copied to clipboard
\frac{90+7}{30}-\left(-\frac{6\times 10+7}{10}\right)
Multiply 3 and 30 to get 90.
\frac{97}{30}-\left(-\frac{6\times 10+7}{10}\right)
Add 90 and 7 to get 97.
\frac{97}{30}-\left(-\frac{60+7}{10}\right)
Multiply 6 and 10 to get 60.
\frac{97}{30}-\left(-\frac{67}{10}\right)
Add 60 and 7 to get 67.
\frac{97}{30}+\frac{67}{10}
The opposite of -\frac{67}{10} is \frac{67}{10}.
\frac{97}{30}+\frac{201}{30}
Least common multiple of 30 and 10 is 30. Convert \frac{97}{30} and \frac{67}{10} to fractions with denominator 30.
\frac{97+201}{30}
Since \frac{97}{30} and \frac{201}{30} have the same denominator, add them by adding their numerators.
\frac{298}{30}
Add 97 and 201 to get 298.
\frac{149}{15}
Reduce the fraction \frac{298}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}