Evaluate
\frac{17}{3}\approx 5.666666667
Factor
\frac{17}{3} = 5\frac{2}{3} = 5.666666666666667
Share
Copied to clipboard
\frac{21+2}{7}-\frac{4\times 3+1}{3}+\frac{6\times 7+5}{7}
Multiply 3 and 7 to get 21.
\frac{23}{7}-\frac{4\times 3+1}{3}+\frac{6\times 7+5}{7}
Add 21 and 2 to get 23.
\frac{23}{7}-\frac{12+1}{3}+\frac{6\times 7+5}{7}
Multiply 4 and 3 to get 12.
\frac{23}{7}-\frac{13}{3}+\frac{6\times 7+5}{7}
Add 12 and 1 to get 13.
\frac{69}{21}-\frac{91}{21}+\frac{6\times 7+5}{7}
Least common multiple of 7 and 3 is 21. Convert \frac{23}{7} and \frac{13}{3} to fractions with denominator 21.
\frac{69-91}{21}+\frac{6\times 7+5}{7}
Since \frac{69}{21} and \frac{91}{21} have the same denominator, subtract them by subtracting their numerators.
-\frac{22}{21}+\frac{6\times 7+5}{7}
Subtract 91 from 69 to get -22.
-\frac{22}{21}+\frac{42+5}{7}
Multiply 6 and 7 to get 42.
-\frac{22}{21}+\frac{47}{7}
Add 42 and 5 to get 47.
-\frac{22}{21}+\frac{141}{21}
Least common multiple of 21 and 7 is 21. Convert -\frac{22}{21} and \frac{47}{7} to fractions with denominator 21.
\frac{-22+141}{21}
Since -\frac{22}{21} and \frac{141}{21} have the same denominator, add them by adding their numerators.
\frac{119}{21}
Add -22 and 141 to get 119.
\frac{17}{3}
Reduce the fraction \frac{119}{21} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}