Evaluate
\frac{733}{140}\approx 5.235714286
Factor
\frac{733}{2 ^ {2} \cdot 5 \cdot 7} = 5\frac{33}{140} = 5.235714285714286
Share
Copied to clipboard
\frac{21+2}{7}+\frac{8\times 4+3}{4}-\frac{6\times 5+4}{5}
Multiply 3 and 7 to get 21.
\frac{23}{7}+\frac{8\times 4+3}{4}-\frac{6\times 5+4}{5}
Add 21 and 2 to get 23.
\frac{23}{7}+\frac{32+3}{4}-\frac{6\times 5+4}{5}
Multiply 8 and 4 to get 32.
\frac{23}{7}+\frac{35}{4}-\frac{6\times 5+4}{5}
Add 32 and 3 to get 35.
\frac{92}{28}+\frac{245}{28}-\frac{6\times 5+4}{5}
Least common multiple of 7 and 4 is 28. Convert \frac{23}{7} and \frac{35}{4} to fractions with denominator 28.
\frac{92+245}{28}-\frac{6\times 5+4}{5}
Since \frac{92}{28} and \frac{245}{28} have the same denominator, add them by adding their numerators.
\frac{337}{28}-\frac{6\times 5+4}{5}
Add 92 and 245 to get 337.
\frac{337}{28}-\frac{30+4}{5}
Multiply 6 and 5 to get 30.
\frac{337}{28}-\frac{34}{5}
Add 30 and 4 to get 34.
\frac{1685}{140}-\frac{952}{140}
Least common multiple of 28 and 5 is 140. Convert \frac{337}{28} and \frac{34}{5} to fractions with denominator 140.
\frac{1685-952}{140}
Since \frac{1685}{140} and \frac{952}{140} have the same denominator, subtract them by subtracting their numerators.
\frac{733}{140}
Subtract 952 from 1685 to get 733.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}