Solve for x
x=\frac{\sqrt{41}}{2}-\frac{19}{6}\approx 0.034895452
x=-\frac{\sqrt{41}}{2}-\frac{19}{6}\approx -6.368228785
Graph
Share
Copied to clipboard
3\times 4\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 3x,6,4.
12\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Multiply 3 and 4 to get 12.
24\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Multiply 12 and 2 to get 24.
4-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Multiply 24 and \frac{1}{6} to get 4.
4-9\left(2x+18\right)x=-48x
Multiply -\frac{3}{4} and 12 to get -9.
4+\left(-18x-162\right)x=-48x
Use the distributive property to multiply -9 by 2x+18.
4-18x^{2}-162x=-48x
Use the distributive property to multiply -18x-162 by x.
4-18x^{2}-162x+48x=0
Add 48x to both sides.
4-18x^{2}-114x=0
Combine -162x and 48x to get -114x.
-18x^{2}-114x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-114\right)±\sqrt{\left(-114\right)^{2}-4\left(-18\right)\times 4}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, -114 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-114\right)±\sqrt{12996-4\left(-18\right)\times 4}}{2\left(-18\right)}
Square -114.
x=\frac{-\left(-114\right)±\sqrt{12996+72\times 4}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-\left(-114\right)±\sqrt{12996+288}}{2\left(-18\right)}
Multiply 72 times 4.
x=\frac{-\left(-114\right)±\sqrt{13284}}{2\left(-18\right)}
Add 12996 to 288.
x=\frac{-\left(-114\right)±18\sqrt{41}}{2\left(-18\right)}
Take the square root of 13284.
x=\frac{114±18\sqrt{41}}{2\left(-18\right)}
The opposite of -114 is 114.
x=\frac{114±18\sqrt{41}}{-36}
Multiply 2 times -18.
x=\frac{18\sqrt{41}+114}{-36}
Now solve the equation x=\frac{114±18\sqrt{41}}{-36} when ± is plus. Add 114 to 18\sqrt{41}.
x=-\frac{\sqrt{41}}{2}-\frac{19}{6}
Divide 114+18\sqrt{41} by -36.
x=\frac{114-18\sqrt{41}}{-36}
Now solve the equation x=\frac{114±18\sqrt{41}}{-36} when ± is minus. Subtract 18\sqrt{41} from 114.
x=\frac{\sqrt{41}}{2}-\frac{19}{6}
Divide 114-18\sqrt{41} by -36.
x=-\frac{\sqrt{41}}{2}-\frac{19}{6} x=\frac{\sqrt{41}}{2}-\frac{19}{6}
The equation is now solved.
3\times 4\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 3x,6,4.
12\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Multiply 3 and 4 to get 12.
24\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Multiply 12 and 2 to get 24.
4-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Multiply 24 and \frac{1}{6} to get 4.
4-9\left(2x+18\right)x=-48x
Multiply -\frac{3}{4} and 12 to get -9.
4+\left(-18x-162\right)x=-48x
Use the distributive property to multiply -9 by 2x+18.
4-18x^{2}-162x=-48x
Use the distributive property to multiply -18x-162 by x.
4-18x^{2}-162x+48x=0
Add 48x to both sides.
4-18x^{2}-114x=0
Combine -162x and 48x to get -114x.
-18x^{2}-114x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{-18x^{2}-114x}{-18}=-\frac{4}{-18}
Divide both sides by -18.
x^{2}+\left(-\frac{114}{-18}\right)x=-\frac{4}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}+\frac{19}{3}x=-\frac{4}{-18}
Reduce the fraction \frac{-114}{-18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{19}{3}x=\frac{2}{9}
Reduce the fraction \frac{-4}{-18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{19}{3}x+\left(\frac{19}{6}\right)^{2}=\frac{2}{9}+\left(\frac{19}{6}\right)^{2}
Divide \frac{19}{3}, the coefficient of the x term, by 2 to get \frac{19}{6}. Then add the square of \frac{19}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{2}{9}+\frac{361}{36}
Square \frac{19}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{41}{4}
Add \frac{2}{9} to \frac{361}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{6}\right)^{2}=\frac{41}{4}
Factor x^{2}+\frac{19}{3}x+\frac{361}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{6}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{19}{6}=\frac{\sqrt{41}}{2} x+\frac{19}{6}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}}{2}-\frac{19}{6} x=-\frac{\sqrt{41}}{2}-\frac{19}{6}
Subtract \frac{19}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}