Evaluate
\frac{59}{42}\approx 1.404761905
Factor
\frac{59}{2 \cdot 3 \cdot 7} = 1\frac{17}{42} = 1.4047619047619047
Quiz
Arithmetic
5 problems similar to:
3 \frac { 9 } { 14 } - 5 \frac { 5 } { 7 } + 3 \frac { 10 } { 21 }
Share
Copied to clipboard
\frac{42+9}{14}-\frac{5\times 7+5}{7}+\frac{3\times 21+10}{21}
Multiply 3 and 14 to get 42.
\frac{51}{14}-\frac{5\times 7+5}{7}+\frac{3\times 21+10}{21}
Add 42 and 9 to get 51.
\frac{51}{14}-\frac{35+5}{7}+\frac{3\times 21+10}{21}
Multiply 5 and 7 to get 35.
\frac{51}{14}-\frac{40}{7}+\frac{3\times 21+10}{21}
Add 35 and 5 to get 40.
\frac{51}{14}-\frac{80}{14}+\frac{3\times 21+10}{21}
Least common multiple of 14 and 7 is 14. Convert \frac{51}{14} and \frac{40}{7} to fractions with denominator 14.
\frac{51-80}{14}+\frac{3\times 21+10}{21}
Since \frac{51}{14} and \frac{80}{14} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{14}+\frac{3\times 21+10}{21}
Subtract 80 from 51 to get -29.
-\frac{29}{14}+\frac{63+10}{21}
Multiply 3 and 21 to get 63.
-\frac{29}{14}+\frac{73}{21}
Add 63 and 10 to get 73.
-\frac{87}{42}+\frac{146}{42}
Least common multiple of 14 and 21 is 42. Convert -\frac{29}{14} and \frac{73}{21} to fractions with denominator 42.
\frac{-87+146}{42}
Since -\frac{87}{42} and \frac{146}{42} have the same denominator, add them by adding their numerators.
\frac{59}{42}
Add -87 and 146 to get 59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}