Evaluate
\frac{143}{40}=3.575
Factor
\frac{11 \cdot 13}{2 ^ {3} \cdot 5} = 3\frac{23}{40} = 3.575
Quiz
Arithmetic
5 problems similar to:
3 \frac { 9 } { 10 } - 2 \frac { 1 } { 8 } + 1 \frac { 4 } { 5 }
Share
Copied to clipboard
\frac{30+9}{10}-\frac{2\times 8+1}{8}+\frac{1\times 5+4}{5}
Multiply 3 and 10 to get 30.
\frac{39}{10}-\frac{2\times 8+1}{8}+\frac{1\times 5+4}{5}
Add 30 and 9 to get 39.
\frac{39}{10}-\frac{16+1}{8}+\frac{1\times 5+4}{5}
Multiply 2 and 8 to get 16.
\frac{39}{10}-\frac{17}{8}+\frac{1\times 5+4}{5}
Add 16 and 1 to get 17.
\frac{156}{40}-\frac{85}{40}+\frac{1\times 5+4}{5}
Least common multiple of 10 and 8 is 40. Convert \frac{39}{10} and \frac{17}{8} to fractions with denominator 40.
\frac{156-85}{40}+\frac{1\times 5+4}{5}
Since \frac{156}{40} and \frac{85}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{71}{40}+\frac{1\times 5+4}{5}
Subtract 85 from 156 to get 71.
\frac{71}{40}+\frac{5+4}{5}
Multiply 1 and 5 to get 5.
\frac{71}{40}+\frac{9}{5}
Add 5 and 4 to get 9.
\frac{71}{40}+\frac{72}{40}
Least common multiple of 40 and 5 is 40. Convert \frac{71}{40} and \frac{9}{5} to fractions with denominator 40.
\frac{71+72}{40}
Since \frac{71}{40} and \frac{72}{40} have the same denominator, add them by adding their numerators.
\frac{143}{40}
Add 71 and 72 to get 143.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}