Verify
false
Share
Copied to clipboard
180\times \frac{3\times 15+7}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Multiply both sides of the equation by 195, the least common multiple of 15,13.
180\times \frac{45+7}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Multiply 3 and 15 to get 45.
180\times \frac{52}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Add 45 and 7 to get 52.
\frac{180\times 52}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Express 180\times \frac{52}{15} as a single fraction.
\frac{9360}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Multiply 180 and 52 to get 9360.
624-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Divide 9360 by 15 to get 624.
624-13\left(45+8\right)=676\times \frac{124}{13}
Multiply 3 and 15 to get 45.
624-13\times 53=676\times \frac{124}{13}
Add 45 and 8 to get 53.
624-689=676\times \frac{124}{13}
Multiply -13 and 53 to get -689.
-65=676\times \frac{124}{13}
Subtract 689 from 624 to get -65.
-65=\frac{676\times 124}{13}
Express 676\times \frac{124}{13} as a single fraction.
-65=\frac{83824}{13}
Multiply 676 and 124 to get 83824.
-65=6448
Divide 83824 by 13 to get 6448.
\text{false}
Compare -65 and 6448.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}