Evaluate
-\frac{1}{3}\approx -0.333333333
Factor
-\frac{1}{3} = -0.3333333333333333
Share
Copied to clipboard
\frac{\left(3\times 15+7\right)\times 12}{15\left(1\times 12+1\right)}-\frac{3\times 15+8}{15}
Divide \frac{3\times 15+7}{15} by \frac{1\times 12+1}{12} by multiplying \frac{3\times 15+7}{15} by the reciprocal of \frac{1\times 12+1}{12}.
\frac{4\left(7+3\times 15\right)}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Cancel out 3 in both numerator and denominator.
\frac{4\left(7+45\right)}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Multiply 3 and 15 to get 45.
\frac{4\times 52}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Add 7 and 45 to get 52.
\frac{208}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Multiply 4 and 52 to get 208.
\frac{208}{5\times 13}-\frac{3\times 15+8}{15}
Add 1 and 12 to get 13.
\frac{208}{65}-\frac{3\times 15+8}{15}
Multiply 5 and 13 to get 65.
\frac{16}{5}-\frac{3\times 15+8}{15}
Reduce the fraction \frac{208}{65} to lowest terms by extracting and canceling out 13.
\frac{16}{5}-\frac{45+8}{15}
Multiply 3 and 15 to get 45.
\frac{16}{5}-\frac{53}{15}
Add 45 and 8 to get 53.
\frac{48}{15}-\frac{53}{15}
Least common multiple of 5 and 15 is 15. Convert \frac{16}{5} and \frac{53}{15} to fractions with denominator 15.
\frac{48-53}{15}
Since \frac{48}{15} and \frac{53}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-5}{15}
Subtract 53 from 48 to get -5.
-\frac{1}{3}
Reduce the fraction \frac{-5}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}