Evaluate
\frac{5}{3}\approx 1.666666667
Factor
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Share
Copied to clipboard
\frac{\frac{15+4}{5}}{3-2.4\times \frac{14}{15}}-\frac{3\times 3+1}{3}
Multiply 3 and 5 to get 15.
\frac{\frac{19}{5}}{3-2.4\times \frac{14}{15}}-\frac{3\times 3+1}{3}
Add 15 and 4 to get 19.
\frac{\frac{19}{5}}{3-\frac{12}{5}\times \frac{14}{15}}-\frac{3\times 3+1}{3}
Convert decimal number 2.4 to fraction \frac{24}{10}. Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{19}{5}}{3-\frac{12\times 14}{5\times 15}}-\frac{3\times 3+1}{3}
Multiply \frac{12}{5} times \frac{14}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{19}{5}}{3-\frac{168}{75}}-\frac{3\times 3+1}{3}
Do the multiplications in the fraction \frac{12\times 14}{5\times 15}.
\frac{\frac{19}{5}}{3-\frac{56}{25}}-\frac{3\times 3+1}{3}
Reduce the fraction \frac{168}{75} to lowest terms by extracting and canceling out 3.
\frac{\frac{19}{5}}{\frac{75}{25}-\frac{56}{25}}-\frac{3\times 3+1}{3}
Convert 3 to fraction \frac{75}{25}.
\frac{\frac{19}{5}}{\frac{75-56}{25}}-\frac{3\times 3+1}{3}
Since \frac{75}{25} and \frac{56}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{19}{5}}{\frac{19}{25}}-\frac{3\times 3+1}{3}
Subtract 56 from 75 to get 19.
\frac{19}{5}\times \frac{25}{19}-\frac{3\times 3+1}{3}
Divide \frac{19}{5} by \frac{19}{25} by multiplying \frac{19}{5} by the reciprocal of \frac{19}{25}.
\frac{19\times 25}{5\times 19}-\frac{3\times 3+1}{3}
Multiply \frac{19}{5} times \frac{25}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{5}-\frac{3\times 3+1}{3}
Cancel out 19 in both numerator and denominator.
5-\frac{3\times 3+1}{3}
Divide 25 by 5 to get 5.
5-\frac{9+1}{3}
Multiply 3 and 3 to get 9.
5-\frac{10}{3}
Add 9 and 1 to get 10.
\frac{15}{3}-\frac{10}{3}
Convert 5 to fraction \frac{15}{3}.
\frac{15-10}{3}
Since \frac{15}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{3}
Subtract 10 from 15 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}