Evaluate
\frac{17}{6}\approx 2.833333333
Factor
\frac{17}{2 \cdot 3} = 2\frac{5}{6} = 2.8333333333333335
Quiz
Arithmetic
5 problems similar to:
3 \frac { 4 } { 5 } + 1 \frac { 7 } { 15 } - 2 \frac { 13 } { 30 }
Share
Copied to clipboard
\frac{15+4}{5}+\frac{1\times 15+7}{15}-\frac{2\times 30+13}{30}
Multiply 3 and 5 to get 15.
\frac{19}{5}+\frac{1\times 15+7}{15}-\frac{2\times 30+13}{30}
Add 15 and 4 to get 19.
\frac{19}{5}+\frac{15+7}{15}-\frac{2\times 30+13}{30}
Multiply 1 and 15 to get 15.
\frac{19}{5}+\frac{22}{15}-\frac{2\times 30+13}{30}
Add 15 and 7 to get 22.
\frac{57}{15}+\frac{22}{15}-\frac{2\times 30+13}{30}
Least common multiple of 5 and 15 is 15. Convert \frac{19}{5} and \frac{22}{15} to fractions with denominator 15.
\frac{57+22}{15}-\frac{2\times 30+13}{30}
Since \frac{57}{15} and \frac{22}{15} have the same denominator, add them by adding their numerators.
\frac{79}{15}-\frac{2\times 30+13}{30}
Add 57 and 22 to get 79.
\frac{79}{15}-\frac{60+13}{30}
Multiply 2 and 30 to get 60.
\frac{79}{15}-\frac{73}{30}
Add 60 and 13 to get 73.
\frac{158}{30}-\frac{73}{30}
Least common multiple of 15 and 30 is 30. Convert \frac{79}{15} and \frac{73}{30} to fractions with denominator 30.
\frac{158-73}{30}
Since \frac{158}{30} and \frac{73}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{85}{30}
Subtract 73 from 158 to get 85.
\frac{17}{6}
Reduce the fraction \frac{85}{30} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}