Evaluate
\frac{318}{133}\approx 2.390977444
Factor
\frac{2 \cdot 3 \cdot 53}{7 \cdot 19} = 2\frac{52}{133} = 2.3909774436090228
Share
Copied to clipboard
\frac{\left(3\times 7+3\right)\times 3}{7\left(11\times 3+5\right)}\times \frac{8\times 6+5}{6}
Divide \frac{3\times 7+3}{7} by \frac{11\times 3+5}{3} by multiplying \frac{3\times 7+3}{7} by the reciprocal of \frac{11\times 3+5}{3}.
\frac{\left(21+3\right)\times 3}{7\left(11\times 3+5\right)}\times \frac{8\times 6+5}{6}
Multiply 3 and 7 to get 21.
\frac{24\times 3}{7\left(11\times 3+5\right)}\times \frac{8\times 6+5}{6}
Add 21 and 3 to get 24.
\frac{72}{7\left(11\times 3+5\right)}\times \frac{8\times 6+5}{6}
Multiply 24 and 3 to get 72.
\frac{72}{7\left(33+5\right)}\times \frac{8\times 6+5}{6}
Multiply 11 and 3 to get 33.
\frac{72}{7\times 38}\times \frac{8\times 6+5}{6}
Add 33 and 5 to get 38.
\frac{72}{266}\times \frac{8\times 6+5}{6}
Multiply 7 and 38 to get 266.
\frac{36}{133}\times \frac{8\times 6+5}{6}
Reduce the fraction \frac{72}{266} to lowest terms by extracting and canceling out 2.
\frac{36}{133}\times \frac{48+5}{6}
Multiply 8 and 6 to get 48.
\frac{36}{133}\times \frac{53}{6}
Add 48 and 5 to get 53.
\frac{36\times 53}{133\times 6}
Multiply \frac{36}{133} times \frac{53}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{1908}{798}
Do the multiplications in the fraction \frac{36\times 53}{133\times 6}.
\frac{318}{133}
Reduce the fraction \frac{1908}{798} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}