Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\times 4+3\right)\times 10}{4\times 3}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Divide \frac{3\times 4+3}{4} by \frac{3}{10} by multiplying \frac{3\times 4+3}{4} by the reciprocal of \frac{3}{10}.
\frac{5\left(3+3\times 4\right)}{2\times 3}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Cancel out 2 in both numerator and denominator.
\frac{5\left(3+12\right)}{2\times 3}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Multiply 3 and 4 to get 12.
\frac{5\times 15}{2\times 3}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Add 3 and 12 to get 15.
\frac{75}{2\times 3}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Multiply 5 and 15 to get 75.
\frac{75}{6}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Multiply 2 and 3 to get 6.
\frac{25}{2}-\frac{-\frac{1\times 6+1}{6}}{\frac{7}{5}}
Reduce the fraction \frac{75}{6} to lowest terms by extracting and canceling out 3.
\frac{25}{2}-\frac{-\frac{6+1}{6}}{\frac{7}{5}}
Multiply 1 and 6 to get 6.
\frac{25}{2}-\frac{-\frac{7}{6}}{\frac{7}{5}}
Add 6 and 1 to get 7.
\frac{25}{2}-\left(-\frac{7}{6}\times \frac{5}{7}\right)
Divide -\frac{7}{6} by \frac{7}{5} by multiplying -\frac{7}{6} by the reciprocal of \frac{7}{5}.
\frac{25}{2}-\frac{-7\times 5}{6\times 7}
Multiply -\frac{7}{6} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{2}-\frac{-35}{42}
Do the multiplications in the fraction \frac{-7\times 5}{6\times 7}.
\frac{25}{2}-\left(-\frac{5}{6}\right)
Reduce the fraction \frac{-35}{42} to lowest terms by extracting and canceling out 7.
\frac{25}{2}+\frac{5}{6}
The opposite of -\frac{5}{6} is \frac{5}{6}.
\frac{75}{6}+\frac{5}{6}
Least common multiple of 2 and 6 is 6. Convert \frac{25}{2} and \frac{5}{6} to fractions with denominator 6.
\frac{75+5}{6}
Since \frac{75}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{80}{6}
Add 75 and 5 to get 80.
\frac{40}{3}
Reduce the fraction \frac{80}{6} to lowest terms by extracting and canceling out 2.