Solve for x
x = \frac{231}{20} = 11\frac{11}{20} = 11.55
Graph
Share
Copied to clipboard
12\left(3\times 2+3\right)=\frac{5}{2}\left(4x-3\right)
Multiply both sides of the equation by 24, the least common multiple of 2,8,6.
12\left(6+3\right)=\frac{5}{2}\left(4x-3\right)
Multiply 3 and 2 to get 6.
12\times 9=\frac{5}{2}\left(4x-3\right)
Add 6 and 3 to get 9.
108=\frac{5}{2}\left(4x-3\right)
Multiply 12 and 9 to get 108.
108=\frac{5}{2}\times 4x+\frac{5}{2}\left(-3\right)
Use the distributive property to multiply \frac{5}{2} by 4x-3.
108=\frac{5\times 4}{2}x+\frac{5}{2}\left(-3\right)
Express \frac{5}{2}\times 4 as a single fraction.
108=\frac{20}{2}x+\frac{5}{2}\left(-3\right)
Multiply 5 and 4 to get 20.
108=10x+\frac{5}{2}\left(-3\right)
Divide 20 by 2 to get 10.
108=10x+\frac{5\left(-3\right)}{2}
Express \frac{5}{2}\left(-3\right) as a single fraction.
108=10x+\frac{-15}{2}
Multiply 5 and -3 to get -15.
108=10x-\frac{15}{2}
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
10x-\frac{15}{2}=108
Swap sides so that all variable terms are on the left hand side.
10x=108+\frac{15}{2}
Add \frac{15}{2} to both sides.
10x=\frac{216}{2}+\frac{15}{2}
Convert 108 to fraction \frac{216}{2}.
10x=\frac{216+15}{2}
Since \frac{216}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
10x=\frac{231}{2}
Add 216 and 15 to get 231.
x=\frac{\frac{231}{2}}{10}
Divide both sides by 10.
x=\frac{231}{2\times 10}
Express \frac{\frac{231}{2}}{10} as a single fraction.
x=\frac{231}{20}
Multiply 2 and 10 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}