Solve for x
x<\frac{22}{3}
Graph
Share
Copied to clipboard
\frac{2x-3}{5}<\frac{7}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
2x-3<\frac{7}{3}\times 5
Multiply both sides by 5. Since 5 is positive, the inequality direction remains the same.
2x-3<\frac{7\times 5}{3}
Express \frac{7}{3}\times 5 as a single fraction.
2x-3<\frac{35}{3}
Multiply 7 and 5 to get 35.
2x<\frac{35}{3}+3
Add 3 to both sides.
2x<\frac{35}{3}+\frac{9}{3}
Convert 3 to fraction \frac{9}{3}.
2x<\frac{35+9}{3}
Since \frac{35}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
2x<\frac{44}{3}
Add 35 and 9 to get 44.
x<\frac{\frac{44}{3}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
x<\frac{44}{3\times 2}
Express \frac{\frac{44}{3}}{2} as a single fraction.
x<\frac{44}{6}
Multiply 3 and 2 to get 6.
x<\frac{22}{3}
Reduce the fraction \frac{44}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}