Evaluate
18.4
Factor
\frac{23 \cdot 2 ^ {2}}{5} = 18\frac{2}{5} = 18.4
Share
Copied to clipboard
\frac{9+1}{3}\times \frac{5\times 5+2}{5}+\frac{2.5}{6.25}
Multiply 3 and 3 to get 9.
\frac{10}{3}\times \frac{5\times 5+2}{5}+\frac{2.5}{6.25}
Add 9 and 1 to get 10.
\frac{10}{3}\times \frac{25+2}{5}+\frac{2.5}{6.25}
Multiply 5 and 5 to get 25.
\frac{10}{3}\times \frac{27}{5}+\frac{2.5}{6.25}
Add 25 and 2 to get 27.
\frac{10\times 27}{3\times 5}+\frac{2.5}{6.25}
Multiply \frac{10}{3} times \frac{27}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{270}{15}+\frac{2.5}{6.25}
Do the multiplications in the fraction \frac{10\times 27}{3\times 5}.
18+\frac{2.5}{6.25}
Divide 270 by 15 to get 18.
18+\frac{250}{625}
Expand \frac{2.5}{6.25} by multiplying both numerator and the denominator by 100.
18+\frac{2}{5}
Reduce the fraction \frac{250}{625} to lowest terms by extracting and canceling out 125.
\frac{90}{5}+\frac{2}{5}
Convert 18 to fraction \frac{90}{5}.
\frac{90+2}{5}
Since \frac{90}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{92}{5}
Add 90 and 2 to get 92.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}