Evaluate
\frac{32}{3}\approx 10.666666667
Factor
\frac{2 ^ {5}}{3} = 10\frac{2}{3} = 10.666666666666666
Share
Copied to clipboard
\frac{9+1}{3}\times 1.9+\frac{19.5}{\frac{4\times 2+1}{2}}
Multiply 3 and 3 to get 9.
\frac{10}{3}\times 1.9+\frac{19.5}{\frac{4\times 2+1}{2}}
Add 9 and 1 to get 10.
\frac{10}{3}\times \frac{19}{10}+\frac{19.5}{\frac{4\times 2+1}{2}}
Convert decimal number 1.9 to fraction \frac{19}{10}.
\frac{10\times 19}{3\times 10}+\frac{19.5}{\frac{4\times 2+1}{2}}
Multiply \frac{10}{3} times \frac{19}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{19}{3}+\frac{19.5}{\frac{4\times 2+1}{2}}
Cancel out 10 in both numerator and denominator.
\frac{19}{3}+\frac{19.5\times 2}{4\times 2+1}
Divide 19.5 by \frac{4\times 2+1}{2} by multiplying 19.5 by the reciprocal of \frac{4\times 2+1}{2}.
\frac{19}{3}+\frac{39}{4\times 2+1}
Multiply 19.5 and 2 to get 39.
\frac{19}{3}+\frac{39}{8+1}
Multiply 4 and 2 to get 8.
\frac{19}{3}+\frac{39}{9}
Add 8 and 1 to get 9.
\frac{19}{3}+\frac{13}{3}
Reduce the fraction \frac{39}{9} to lowest terms by extracting and canceling out 3.
\frac{19+13}{3}
Since \frac{19}{3} and \frac{13}{3} have the same denominator, add them by adding their numerators.
\frac{32}{3}
Add 19 and 13 to get 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}