Evaluate
\frac{25}{4}=6.25
Factor
\frac{5 ^ {2}}{2 ^ {2}} = 6\frac{1}{4} = 6.25
Share
Copied to clipboard
\frac{6+1}{2}-\frac{6\times 6+4}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Multiply 3 and 2 to get 6.
\frac{7}{2}-\frac{6\times 6+4}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Add 6 and 1 to get 7.
\frac{7}{2}-\frac{36+4}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Multiply 6 and 6 to get 36.
\frac{7}{2}-\frac{40}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Add 36 and 4 to get 40.
\frac{7}{2}-\frac{20}{3}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Reduce the fraction \frac{40}{6} to lowest terms by extracting and canceling out 2.
\frac{21}{6}-\frac{40}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Least common multiple of 2 and 3 is 6. Convert \frac{7}{2} and \frac{20}{3} to fractions with denominator 6.
\frac{21-40}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Since \frac{21}{6} and \frac{40}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{6}+\frac{11\times 4+3}{4}-\frac{2\times 3+1}{3}
Subtract 40 from 21 to get -19.
-\frac{19}{6}+\frac{44+3}{4}-\frac{2\times 3+1}{3}
Multiply 11 and 4 to get 44.
-\frac{19}{6}+\frac{47}{4}-\frac{2\times 3+1}{3}
Add 44 and 3 to get 47.
-\frac{38}{12}+\frac{141}{12}-\frac{2\times 3+1}{3}
Least common multiple of 6 and 4 is 12. Convert -\frac{19}{6} and \frac{47}{4} to fractions with denominator 12.
\frac{-38+141}{12}-\frac{2\times 3+1}{3}
Since -\frac{38}{12} and \frac{141}{12} have the same denominator, add them by adding their numerators.
\frac{103}{12}-\frac{2\times 3+1}{3}
Add -38 and 141 to get 103.
\frac{103}{12}-\frac{6+1}{3}
Multiply 2 and 3 to get 6.
\frac{103}{12}-\frac{7}{3}
Add 6 and 1 to get 7.
\frac{103}{12}-\frac{28}{12}
Least common multiple of 12 and 3 is 12. Convert \frac{103}{12} and \frac{7}{3} to fractions with denominator 12.
\frac{103-28}{12}
Since \frac{103}{12} and \frac{28}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{75}{12}
Subtract 28 from 103 to get 75.
\frac{25}{4}
Reduce the fraction \frac{75}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}