Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6+1}{2}+\frac{1}{3}-\left(\frac{7\times 42+16}{42}-\frac{112\times 213+80}{213}-\frac{5\times 426+135}{426}\right)
Multiply 3 and 2 to get 6.
\frac{7}{2}+\frac{1}{3}-\left(\frac{7\times 42+16}{42}-\frac{112\times 213+80}{213}-\frac{5\times 426+135}{426}\right)
Add 6 and 1 to get 7.
\frac{7}{2}+\frac{1}{3}-\left(\frac{294+16}{42}-\frac{112\times 213+80}{213}-\frac{5\times 426+135}{426}\right)
Multiply 7 and 42 to get 294.
\frac{7}{2}+\frac{1}{3}-\left(\frac{310}{42}-\frac{112\times 213+80}{213}-\frac{5\times 426+135}{426}\right)
Add 294 and 16 to get 310.
\frac{7}{2}+\frac{1}{3}-\left(\frac{155}{21}-\frac{112\times 213+80}{213}-\frac{5\times 426+135}{426}\right)
Reduce the fraction \frac{310}{42} to lowest terms by extracting and canceling out 2.
\frac{7}{2}+\frac{1}{3}-\left(\frac{155}{21}-\frac{23856+80}{213}-\frac{5\times 426+135}{426}\right)
Multiply 112 and 213 to get 23856.
\frac{7}{2}+\frac{1}{3}-\left(\frac{155}{21}-\frac{23936}{213}-\frac{5\times 426+135}{426}\right)
Add 23856 and 80 to get 23936.
\frac{7}{2}+\frac{1}{3}-\left(\frac{11005}{1491}-\frac{167552}{1491}-\frac{5\times 426+135}{426}\right)
Least common multiple of 21 and 213 is 1491. Convert \frac{155}{21} and \frac{23936}{213} to fractions with denominator 1491.
\frac{7}{2}+\frac{1}{3}-\left(\frac{11005-167552}{1491}-\frac{5\times 426+135}{426}\right)
Since \frac{11005}{1491} and \frac{167552}{1491} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{2}+\frac{1}{3}-\left(-\frac{156547}{1491}-\frac{5\times 426+135}{426}\right)
Subtract 167552 from 11005 to get -156547.
\frac{7}{2}+\frac{1}{3}-\left(-\frac{156547}{1491}-\frac{2130+135}{426}\right)
Multiply 5 and 426 to get 2130.
\frac{7}{2}+\frac{1}{3}-\left(-\frac{156547}{1491}-\frac{2265}{426}\right)
Add 2130 and 135 to get 2265.
\frac{7}{2}+\frac{1}{3}-\left(-\frac{156547}{1491}-\frac{755}{142}\right)
Reduce the fraction \frac{2265}{426} to lowest terms by extracting and canceling out 3.
\frac{7}{2}+\frac{1}{3}-\left(-\frac{313094}{2982}-\frac{15855}{2982}\right)
Least common multiple of 1491 and 142 is 2982. Convert -\frac{156547}{1491} and \frac{755}{142} to fractions with denominator 2982.
\frac{7}{2}+\frac{1}{3}-\frac{-313094-15855}{2982}
Since -\frac{313094}{2982} and \frac{15855}{2982} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{2}+\frac{1}{3}-\left(-\frac{328949}{2982}\right)
Subtract 15855 from -313094 to get -328949.
\frac{7}{2}+\frac{1}{3}+\frac{328949}{2982}
The opposite of -\frac{328949}{2982} is \frac{328949}{2982}.
\frac{7}{2}+\frac{994}{2982}+\frac{328949}{2982}
Least common multiple of 3 and 2982 is 2982. Convert \frac{1}{3} and \frac{328949}{2982} to fractions with denominator 2982.
\frac{7}{2}+\frac{994+328949}{2982}
Since \frac{994}{2982} and \frac{328949}{2982} have the same denominator, add them by adding their numerators.
\frac{7}{2}+\frac{329943}{2982}
Add 994 and 328949 to get 329943.
\frac{7}{2}+\frac{109981}{994}
Reduce the fraction \frac{329943}{2982} to lowest terms by extracting and canceling out 3.
\frac{3479}{994}+\frac{109981}{994}
Least common multiple of 2 and 994 is 994. Convert \frac{7}{2} and \frac{109981}{994} to fractions with denominator 994.
\frac{3479+109981}{994}
Since \frac{3479}{994} and \frac{109981}{994} have the same denominator, add them by adding their numerators.
\frac{113460}{994}
Add 3479 and 109981 to get 113460.
\frac{56730}{497}
Reduce the fraction \frac{113460}{994} to lowest terms by extracting and canceling out 2.