Evaluate
\frac{12}{5}=2.4
Factor
\frac{2 ^ {2} \cdot 3}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
\frac{3+1}{1}\left(\frac{1}{2}+\frac{2}{5}\right)\times \frac{2}{3}
Multiply 3 and 1 to get 3.
\frac{4}{1}\left(\frac{1}{2}+\frac{2}{5}\right)\times \frac{2}{3}
Add 3 and 1 to get 4.
4\left(\frac{1}{2}+\frac{2}{5}\right)\times \frac{2}{3}
Anything divided by one gives itself.
4\left(\frac{5}{10}+\frac{4}{10}\right)\times \frac{2}{3}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
4\times \frac{5+4}{10}\times \frac{2}{3}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, add them by adding their numerators.
4\times \frac{9}{10}\times \frac{2}{3}
Add 5 and 4 to get 9.
\frac{4\times 9}{10}\times \frac{2}{3}
Express 4\times \frac{9}{10} as a single fraction.
\frac{36}{10}\times \frac{2}{3}
Multiply 4 and 9 to get 36.
\frac{18}{5}\times \frac{2}{3}
Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.
\frac{18\times 2}{5\times 3}
Multiply \frac{18}{5} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{15}
Do the multiplications in the fraction \frac{18\times 2}{5\times 3}.
\frac{12}{5}
Reduce the fraction \frac{36}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}