Solve for y
y=\frac{\sqrt{330}}{2}-2\approx 7.082951062
y=-\frac{\sqrt{330}}{2}-2\approx -11.082951062
Graph
Share
Copied to clipboard
3-\left(2y+9\right)\left(y-7\right)=13\left(y-7\right)
Variable y cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by y-7.
3+\left(-2y-9\right)\left(y-7\right)=13\left(y-7\right)
Use the distributive property to multiply -1 by 2y+9.
3-2y^{2}+5y+63=13\left(y-7\right)
Use the distributive property to multiply -2y-9 by y-7 and combine like terms.
66-2y^{2}+5y=13\left(y-7\right)
Add 3 and 63 to get 66.
66-2y^{2}+5y=13y-91
Use the distributive property to multiply 13 by y-7.
66-2y^{2}+5y-13y=-91
Subtract 13y from both sides.
66-2y^{2}-8y=-91
Combine 5y and -13y to get -8y.
66-2y^{2}-8y+91=0
Add 91 to both sides.
157-2y^{2}-8y=0
Add 66 and 91 to get 157.
-2y^{2}-8y+157=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-2\right)\times 157}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -8 for b, and 157 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\left(-2\right)\times 157}}{2\left(-2\right)}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64+8\times 157}}{2\left(-2\right)}
Multiply -4 times -2.
y=\frac{-\left(-8\right)±\sqrt{64+1256}}{2\left(-2\right)}
Multiply 8 times 157.
y=\frac{-\left(-8\right)±\sqrt{1320}}{2\left(-2\right)}
Add 64 to 1256.
y=\frac{-\left(-8\right)±2\sqrt{330}}{2\left(-2\right)}
Take the square root of 1320.
y=\frac{8±2\sqrt{330}}{2\left(-2\right)}
The opposite of -8 is 8.
y=\frac{8±2\sqrt{330}}{-4}
Multiply 2 times -2.
y=\frac{2\sqrt{330}+8}{-4}
Now solve the equation y=\frac{8±2\sqrt{330}}{-4} when ± is plus. Add 8 to 2\sqrt{330}.
y=-\frac{\sqrt{330}}{2}-2
Divide 8+2\sqrt{330} by -4.
y=\frac{8-2\sqrt{330}}{-4}
Now solve the equation y=\frac{8±2\sqrt{330}}{-4} when ± is minus. Subtract 2\sqrt{330} from 8.
y=\frac{\sqrt{330}}{2}-2
Divide 8-2\sqrt{330} by -4.
y=-\frac{\sqrt{330}}{2}-2 y=\frac{\sqrt{330}}{2}-2
The equation is now solved.
3-\left(2y+9\right)\left(y-7\right)=13\left(y-7\right)
Variable y cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by y-7.
3+\left(-2y-9\right)\left(y-7\right)=13\left(y-7\right)
Use the distributive property to multiply -1 by 2y+9.
3-2y^{2}+5y+63=13\left(y-7\right)
Use the distributive property to multiply -2y-9 by y-7 and combine like terms.
66-2y^{2}+5y=13\left(y-7\right)
Add 3 and 63 to get 66.
66-2y^{2}+5y=13y-91
Use the distributive property to multiply 13 by y-7.
66-2y^{2}+5y-13y=-91
Subtract 13y from both sides.
66-2y^{2}-8y=-91
Combine 5y and -13y to get -8y.
-2y^{2}-8y=-91-66
Subtract 66 from both sides.
-2y^{2}-8y=-157
Subtract 66 from -91 to get -157.
\frac{-2y^{2}-8y}{-2}=-\frac{157}{-2}
Divide both sides by -2.
y^{2}+\left(-\frac{8}{-2}\right)y=-\frac{157}{-2}
Dividing by -2 undoes the multiplication by -2.
y^{2}+4y=-\frac{157}{-2}
Divide -8 by -2.
y^{2}+4y=\frac{157}{2}
Divide -157 by -2.
y^{2}+4y+2^{2}=\frac{157}{2}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+4y+4=\frac{157}{2}+4
Square 2.
y^{2}+4y+4=\frac{165}{2}
Add \frac{157}{2} to 4.
\left(y+2\right)^{2}=\frac{165}{2}
Factor y^{2}+4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+2\right)^{2}}=\sqrt{\frac{165}{2}}
Take the square root of both sides of the equation.
y+2=\frac{\sqrt{330}}{2} y+2=-\frac{\sqrt{330}}{2}
Simplify.
y=\frac{\sqrt{330}}{2}-2 y=-\frac{\sqrt{330}}{2}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}