Solve for x
x = \frac{24}{5} = 4\frac{4}{5} = 4.8
Graph
Share
Copied to clipboard
3=15\left(-x+5\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by -x+5.
3=-15x+75
Use the distributive property to multiply 15 by -x+5.
-15x+75=3
Swap sides so that all variable terms are on the left hand side.
-15x=3-75
Subtract 75 from both sides.
-15x=-72
Subtract 75 from 3 to get -72.
x=\frac{-72}{-15}
Divide both sides by -15.
x=\frac{24}{5}
Reduce the fraction \frac{-72}{-15} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}