Solve for b
b=\frac{119x}{24}-\frac{721}{120}
Solve for x
x=\frac{24b}{119}+\frac{103}{85}
Graph
Quiz
Linear Equation
5 problems similar to:
3 \cdot 57 + 60 \cdot 2 \cdot b = 7 \cdot 85 x - 10 \cdot 55
Share
Copied to clipboard
171+120b=7\times 85x-10\times 55
Do the multiplications.
171+120b=595x-10\times 55
Multiply 7 and 85 to get 595.
171+120b=595x-550
Multiply 10 and 55 to get 550.
120b=595x-550-171
Subtract 171 from both sides.
120b=595x-721
Subtract 171 from -550 to get -721.
\frac{120b}{120}=\frac{595x-721}{120}
Divide both sides by 120.
b=\frac{595x-721}{120}
Dividing by 120 undoes the multiplication by 120.
b=\frac{119x}{24}-\frac{721}{120}
Divide 595x-721 by 120.
171+120b=7\times 85x-10\times 55
Do the multiplications.
171+120b=595x-10\times 55
Multiply 7 and 85 to get 595.
171+120b=595x-550
Multiply 10 and 55 to get 550.
595x-550=171+120b
Swap sides so that all variable terms are on the left hand side.
595x=171+120b+550
Add 550 to both sides.
595x=721+120b
Add 171 and 550 to get 721.
595x=120b+721
The equation is in standard form.
\frac{595x}{595}=\frac{120b+721}{595}
Divide both sides by 595.
x=\frac{120b+721}{595}
Dividing by 595 undoes the multiplication by 595.
x=\frac{24b}{119}+\frac{103}{85}
Divide 721+120b by 595.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}