Solve for x
x = \frac{14}{9} = 1\frac{5}{9} \approx 1.555555556
Graph
Share
Copied to clipboard
2\sqrt{7-x}=11-\left(3\times 2x-3\right)
Subtract 3\times 2x-3 from both sides of the equation.
2\sqrt{7-x}=11-\left(6x-3\right)
Multiply 3 and 2 to get 6.
2\sqrt{7-x}=11-6x-\left(-3\right)
To find the opposite of 6x-3, find the opposite of each term.
2\sqrt{7-x}=11-6x+3
The opposite of -3 is 3.
2\sqrt{7-x}=14-6x
Add 11 and 3 to get 14.
\left(2\sqrt{7-x}\right)^{2}=\left(14-6x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{7-x}\right)^{2}=\left(14-6x\right)^{2}
Expand \left(2\sqrt{7-x}\right)^{2}.
4\left(\sqrt{7-x}\right)^{2}=\left(14-6x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(7-x\right)=\left(14-6x\right)^{2}
Calculate \sqrt{7-x} to the power of 2 and get 7-x.
28-4x=\left(14-6x\right)^{2}
Use the distributive property to multiply 4 by 7-x.
28-4x=196-168x+36x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-6x\right)^{2}.
28-4x-196=-168x+36x^{2}
Subtract 196 from both sides.
-168-4x=-168x+36x^{2}
Subtract 196 from 28 to get -168.
-168-4x+168x=36x^{2}
Add 168x to both sides.
-168+164x=36x^{2}
Combine -4x and 168x to get 164x.
-168+164x-36x^{2}=0
Subtract 36x^{2} from both sides.
-36x^{2}+164x-168=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-164±\sqrt{164^{2}-4\left(-36\right)\left(-168\right)}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, 164 for b, and -168 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-164±\sqrt{26896-4\left(-36\right)\left(-168\right)}}{2\left(-36\right)}
Square 164.
x=\frac{-164±\sqrt{26896+144\left(-168\right)}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{-164±\sqrt{26896-24192}}{2\left(-36\right)}
Multiply 144 times -168.
x=\frac{-164±\sqrt{2704}}{2\left(-36\right)}
Add 26896 to -24192.
x=\frac{-164±52}{2\left(-36\right)}
Take the square root of 2704.
x=\frac{-164±52}{-72}
Multiply 2 times -36.
x=-\frac{112}{-72}
Now solve the equation x=\frac{-164±52}{-72} when ± is plus. Add -164 to 52.
x=\frac{14}{9}
Reduce the fraction \frac{-112}{-72} to lowest terms by extracting and canceling out 8.
x=-\frac{216}{-72}
Now solve the equation x=\frac{-164±52}{-72} when ± is minus. Subtract 52 from -164.
x=3
Divide -216 by -72.
x=\frac{14}{9} x=3
The equation is now solved.
3\times 2\times \frac{14}{9}-3+2\sqrt{7-\frac{14}{9}}=11
Substitute \frac{14}{9} for x in the equation 3\times 2x-3+2\sqrt{7-x}=11.
11=11
Simplify. The value x=\frac{14}{9} satisfies the equation.
3\times 2\times 3-3+2\sqrt{7-3}=11
Substitute 3 for x in the equation 3\times 2x-3+2\sqrt{7-x}=11.
19=11
Simplify. The value x=3 does not satisfy the equation.
x=\frac{14}{9}
Equation 2\sqrt{7-x}=14-6x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}