Evaluate
\left(1-x\right)\left(16x+31\right)
Expand
31-15x-16x^{2}
Graph
Share
Copied to clipboard
6-15x-\left(4x-5\right)\left(4x+5\right)
Use the distributive property to multiply 3 by 2-5x.
6-15x-\left(\left(4x\right)^{2}-5^{2}\right)
Consider \left(4x-5\right)\left(4x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6-15x-\left(4^{2}x^{2}-5^{2}\right)
Expand \left(4x\right)^{2}.
6-15x-\left(16x^{2}-5^{2}\right)
Calculate 4 to the power of 2 and get 16.
6-15x-\left(16x^{2}-25\right)
Calculate 5 to the power of 2 and get 25.
6-15x-16x^{2}-\left(-25\right)
To find the opposite of 16x^{2}-25, find the opposite of each term.
6-15x-16x^{2}+25
The opposite of -25 is 25.
31-15x-16x^{2}
Add 6 and 25 to get 31.
6-15x-\left(4x-5\right)\left(4x+5\right)
Use the distributive property to multiply 3 by 2-5x.
6-15x-\left(\left(4x\right)^{2}-5^{2}\right)
Consider \left(4x-5\right)\left(4x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6-15x-\left(4^{2}x^{2}-5^{2}\right)
Expand \left(4x\right)^{2}.
6-15x-\left(16x^{2}-5^{2}\right)
Calculate 4 to the power of 2 and get 16.
6-15x-\left(16x^{2}-25\right)
Calculate 5 to the power of 2 and get 25.
6-15x-16x^{2}-\left(-25\right)
To find the opposite of 16x^{2}-25, find the opposite of each term.
6-15x-16x^{2}+25
The opposite of -25 is 25.
31-15x-16x^{2}
Add 6 and 25 to get 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}