Evaluate
\frac{10}{9}\approx 1.111111111
Factor
\frac{2 \cdot 5}{3 ^ {2}} = 1\frac{1}{9} = 1.1111111111111112
Share
Copied to clipboard
3\times \frac{1}{27}-3\times \left(\frac{1}{3}\right)^{2}+\frac{1}{3}+1
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{3}{27}-3\times \left(\frac{1}{3}\right)^{2}+\frac{1}{3}+1
Multiply 3 and \frac{1}{27} to get \frac{3}{27}.
\frac{1}{9}-3\times \left(\frac{1}{3}\right)^{2}+\frac{1}{3}+1
Reduce the fraction \frac{3}{27} to lowest terms by extracting and canceling out 3.
\frac{1}{9}-3\times \frac{1}{9}+\frac{1}{3}+1
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}-\frac{3}{9}+\frac{1}{3}+1
Multiply 3 and \frac{1}{9} to get \frac{3}{9}.
\frac{1-3}{9}+\frac{1}{3}+1
Since \frac{1}{9} and \frac{3}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{9}+\frac{1}{3}+1
Subtract 3 from 1 to get -2.
-\frac{2}{9}+\frac{3}{9}+1
Least common multiple of 9 and 3 is 9. Convert -\frac{2}{9} and \frac{1}{3} to fractions with denominator 9.
\frac{-2+3}{9}+1
Since -\frac{2}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
\frac{1}{9}+1
Add -2 and 3 to get 1.
\frac{1}{9}+\frac{9}{9}
Convert 1 to fraction \frac{9}{9}.
\frac{1+9}{9}
Since \frac{1}{9} and \frac{9}{9} have the same denominator, add them by adding their numerators.
\frac{10}{9}
Add 1 and 9 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}