Solve for x
x=\frac{2\sqrt{31}+2}{15}\approx 0.875701915
x=\frac{2-2\sqrt{31}}{15}\approx -0.609035248
Graph
Share
Copied to clipboard
\frac{1600}{x}=\frac{6000}{x+2}x
Cancel out 3 on both sides.
\left(x+2\right)\times 1600=x\times 6000x
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right), the least common multiple of x,x+2.
\left(x+2\right)\times 1600=x^{2}\times 6000
Multiply x and x to get x^{2}.
1600x+3200=x^{2}\times 6000
Use the distributive property to multiply x+2 by 1600.
1600x+3200-x^{2}\times 6000=0
Subtract x^{2}\times 6000 from both sides.
1600x+3200-6000x^{2}=0
Multiply -1 and 6000 to get -6000.
-6000x^{2}+1600x+3200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1600±\sqrt{1600^{2}-4\left(-6000\right)\times 3200}}{2\left(-6000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6000 for a, 1600 for b, and 3200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1600±\sqrt{2560000-4\left(-6000\right)\times 3200}}{2\left(-6000\right)}
Square 1600.
x=\frac{-1600±\sqrt{2560000+24000\times 3200}}{2\left(-6000\right)}
Multiply -4 times -6000.
x=\frac{-1600±\sqrt{2560000+76800000}}{2\left(-6000\right)}
Multiply 24000 times 3200.
x=\frac{-1600±\sqrt{79360000}}{2\left(-6000\right)}
Add 2560000 to 76800000.
x=\frac{-1600±1600\sqrt{31}}{2\left(-6000\right)}
Take the square root of 79360000.
x=\frac{-1600±1600\sqrt{31}}{-12000}
Multiply 2 times -6000.
x=\frac{1600\sqrt{31}-1600}{-12000}
Now solve the equation x=\frac{-1600±1600\sqrt{31}}{-12000} when ± is plus. Add -1600 to 1600\sqrt{31}.
x=\frac{2-2\sqrt{31}}{15}
Divide -1600+1600\sqrt{31} by -12000.
x=\frac{-1600\sqrt{31}-1600}{-12000}
Now solve the equation x=\frac{-1600±1600\sqrt{31}}{-12000} when ± is minus. Subtract 1600\sqrt{31} from -1600.
x=\frac{2\sqrt{31}+2}{15}
Divide -1600-1600\sqrt{31} by -12000.
x=\frac{2-2\sqrt{31}}{15} x=\frac{2\sqrt{31}+2}{15}
The equation is now solved.
\frac{1600}{x}=\frac{6000}{x+2}x
Cancel out 3 on both sides.
\left(x+2\right)\times 1600=x\times 6000x
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right), the least common multiple of x,x+2.
\left(x+2\right)\times 1600=x^{2}\times 6000
Multiply x and x to get x^{2}.
1600x+3200=x^{2}\times 6000
Use the distributive property to multiply x+2 by 1600.
1600x+3200-x^{2}\times 6000=0
Subtract x^{2}\times 6000 from both sides.
1600x+3200-6000x^{2}=0
Multiply -1 and 6000 to get -6000.
1600x-6000x^{2}=-3200
Subtract 3200 from both sides. Anything subtracted from zero gives its negation.
-6000x^{2}+1600x=-3200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6000x^{2}+1600x}{-6000}=-\frac{3200}{-6000}
Divide both sides by -6000.
x^{2}+\frac{1600}{-6000}x=-\frac{3200}{-6000}
Dividing by -6000 undoes the multiplication by -6000.
x^{2}-\frac{4}{15}x=-\frac{3200}{-6000}
Reduce the fraction \frac{1600}{-6000} to lowest terms by extracting and canceling out 400.
x^{2}-\frac{4}{15}x=\frac{8}{15}
Reduce the fraction \frac{-3200}{-6000} to lowest terms by extracting and canceling out 400.
x^{2}-\frac{4}{15}x+\left(-\frac{2}{15}\right)^{2}=\frac{8}{15}+\left(-\frac{2}{15}\right)^{2}
Divide -\frac{4}{15}, the coefficient of the x term, by 2 to get -\frac{2}{15}. Then add the square of -\frac{2}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{15}x+\frac{4}{225}=\frac{8}{15}+\frac{4}{225}
Square -\frac{2}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{15}x+\frac{4}{225}=\frac{124}{225}
Add \frac{8}{15} to \frac{4}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{15}\right)^{2}=\frac{124}{225}
Factor x^{2}-\frac{4}{15}x+\frac{4}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{15}\right)^{2}}=\sqrt{\frac{124}{225}}
Take the square root of both sides of the equation.
x-\frac{2}{15}=\frac{2\sqrt{31}}{15} x-\frac{2}{15}=-\frac{2\sqrt{31}}{15}
Simplify.
x=\frac{2\sqrt{31}+2}{15} x=\frac{2-2\sqrt{31}}{15}
Add \frac{2}{15} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}