Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\sqrt{\frac{2}{3}}+\sqrt{\frac{1}{6}}-\frac{1}{5}\sqrt{54}
Multiply 2 and 3 to get 6.
6\times \frac{\sqrt{2}}{\sqrt{3}}+\sqrt{\frac{1}{6}}-\frac{1}{5}\sqrt{54}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
6\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{\frac{1}{6}}-\frac{1}{5}\sqrt{54}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
6\times \frac{\sqrt{2}\sqrt{3}}{3}+\sqrt{\frac{1}{6}}-\frac{1}{5}\sqrt{54}
The square of \sqrt{3} is 3.
6\times \frac{\sqrt{6}}{3}+\sqrt{\frac{1}{6}}-\frac{1}{5}\sqrt{54}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{6}+\sqrt{\frac{1}{6}}-\frac{1}{5}\sqrt{54}
Cancel out 3, the greatest common factor in 6 and 3.
2\sqrt{6}+\frac{\sqrt{1}}{\sqrt{6}}-\frac{1}{5}\sqrt{54}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
2\sqrt{6}+\frac{1}{\sqrt{6}}-\frac{1}{5}\sqrt{54}
Calculate the square root of 1 and get 1.
2\sqrt{6}+\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{1}{5}\sqrt{54}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
2\sqrt{6}+\frac{\sqrt{6}}{6}-\frac{1}{5}\sqrt{54}
The square of \sqrt{6} is 6.
\frac{13}{6}\sqrt{6}-\frac{1}{5}\sqrt{54}
Combine 2\sqrt{6} and \frac{\sqrt{6}}{6} to get \frac{13}{6}\sqrt{6}.
\frac{13}{6}\sqrt{6}-\frac{1}{5}\times 3\sqrt{6}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
\frac{13}{6}\sqrt{6}+\frac{-3}{5}\sqrt{6}
Express -\frac{1}{5}\times 3 as a single fraction.
\frac{13}{6}\sqrt{6}-\frac{3}{5}\sqrt{6}
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
\frac{47}{30}\sqrt{6}
Combine \frac{13}{6}\sqrt{6} and -\frac{3}{5}\sqrt{6} to get \frac{47}{30}\sqrt{6}.