Solve for x
x=\frac{5}{6}\approx 0.833333333
Graph
Share
Copied to clipboard
2x-1-\left(3\left(2x-1\right)-3\right)=\frac{5}{3}
Divide both sides by 3.
2x-1-\left(6x-3-3\right)=\frac{5}{3}
Use the distributive property to multiply 3 by 2x-1.
2x-1-\left(6x-6\right)=\frac{5}{3}
Subtract 3 from -3 to get -6.
2x-1-6x-\left(-6\right)=\frac{5}{3}
To find the opposite of 6x-6, find the opposite of each term.
2x-1-6x+6=\frac{5}{3}
The opposite of -6 is 6.
-4x-1+6=\frac{5}{3}
Combine 2x and -6x to get -4x.
-4x+5=\frac{5}{3}
Add -1 and 6 to get 5.
-4x=\frac{5}{3}-5
Subtract 5 from both sides.
-4x=\frac{5}{3}-\frac{15}{3}
Convert 5 to fraction \frac{15}{3}.
-4x=\frac{5-15}{3}
Since \frac{5}{3} and \frac{15}{3} have the same denominator, subtract them by subtracting their numerators.
-4x=-\frac{10}{3}
Subtract 15 from 5 to get -10.
x=\frac{-\frac{10}{3}}{-4}
Divide both sides by -4.
x=\frac{-10}{3\left(-4\right)}
Express \frac{-\frac{10}{3}}{-4} as a single fraction.
x=\frac{-10}{-12}
Multiply 3 and -4 to get -12.
x=\frac{5}{6}
Reduce the fraction \frac{-10}{-12} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}