Solve for a
a=6b-5\times 3^{x}
Solve for b
b=\frac{5\times 3^{x}+a}{6}
Graph
Share
Copied to clipboard
3^{x}-a=6\times 3^{x}-6b
Use the distributive property to multiply 6 by 3^{x}-b.
-a=6\times 3^{x}-6b-3^{x}
Subtract 3^{x} from both sides.
-a=5\times 3^{x}-6b
Combine 6\times 3^{x} and -3^{x} to get 5\times 3^{x}.
\frac{-a}{-1}=\frac{5\times 3^{x}-6b}{-1}
Divide both sides by -1.
a=\frac{5\times 3^{x}-6b}{-1}
Dividing by -1 undoes the multiplication by -1.
a=6b-5\times 3^{x}
Divide 5\times 3^{x}-6b by -1.
3^{x}-a=6\times 3^{x}-6b
Use the distributive property to multiply 6 by 3^{x}-b.
6\times 3^{x}-6b=3^{x}-a
Swap sides so that all variable terms are on the left hand side.
-6b=3^{x}-a-6\times 3^{x}
Subtract 6\times 3^{x} from both sides.
-6b=-5\times 3^{x}-a
Combine 3^{x} and -6\times 3^{x} to get -5\times 3^{x}.
\frac{-6b}{-6}=\frac{-5\times 3^{x}-a}{-6}
Divide both sides by -6.
b=\frac{-5\times 3^{x}-a}{-6}
Dividing by -6 undoes the multiplication by -6.
b=\frac{5\times 3^{x}+a}{6}
Divide -5\times 3^{x}-a by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}