Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. g
Tick mark Image

Similar Problems from Web Search

Share

\frac{6561}{15}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Calculate 3 to the power of 8 and get 6561.
\frac{2187}{5}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Reduce the fraction \frac{6561}{15} to lowest terms by extracting and canceling out 3.
\frac{2187}{5}g-\frac{5}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Calculate 5 to the power of 1 and get 5.
\frac{4349}{10}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Combine \frac{2187}{5}g and -\frac{5}{2}g to get \frac{4349}{10}g.
\frac{4349}{10}g-\frac{1}{10}g-\frac{2^{5}}{6}g
Calculate 1 to the power of 1 and get 1.
\frac{2174}{5}g-\frac{2^{5}}{6}g
Combine \frac{4349}{10}g and -\frac{1}{10}g to get \frac{2174}{5}g.
\frac{2174}{5}g-\frac{32}{6}g
Calculate 2 to the power of 5 and get 32.
\frac{2174}{5}g-\frac{16}{3}g
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\frac{6442}{15}g
Combine \frac{2174}{5}g and -\frac{16}{3}g to get \frac{6442}{15}g.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{6561}{15}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Calculate 3 to the power of 8 and get 6561.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2187}{5}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Reduce the fraction \frac{6561}{15} to lowest terms by extracting and canceling out 3.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2187}{5}g-\frac{5}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Calculate 5 to the power of 1 and get 5.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{4349}{10}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Combine \frac{2187}{5}g and -\frac{5}{2}g to get \frac{4349}{10}g.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{4349}{10}g-\frac{1}{10}g-\frac{2^{5}}{6}g)
Calculate 1 to the power of 1 and get 1.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2174}{5}g-\frac{2^{5}}{6}g)
Combine \frac{4349}{10}g and -\frac{1}{10}g to get \frac{2174}{5}g.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2174}{5}g-\frac{32}{6}g)
Calculate 2 to the power of 5 and get 32.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2174}{5}g-\frac{16}{3}g)
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{6442}{15}g)
Combine \frac{2174}{5}g and -\frac{16}{3}g to get \frac{6442}{15}g.
\frac{6442}{15}g^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{6442}{15}g^{0}
Subtract 1 from 1.
\frac{6442}{15}\times 1
For any term t except 0, t^{0}=1.
\frac{6442}{15}
For any term t, t\times 1=t and 1t=t.