Evaluate
\frac{6442g}{15}
Differentiate w.r.t. g
\frac{6442}{15} = 429\frac{7}{15} = 429.46666666666664
Share
Copied to clipboard
\frac{6561}{15}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Calculate 3 to the power of 8 and get 6561.
\frac{2187}{5}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Reduce the fraction \frac{6561}{15} to lowest terms by extracting and canceling out 3.
\frac{2187}{5}g-\frac{5}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Calculate 5 to the power of 1 and get 5.
\frac{4349}{10}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g
Combine \frac{2187}{5}g and -\frac{5}{2}g to get \frac{4349}{10}g.
\frac{4349}{10}g-\frac{1}{10}g-\frac{2^{5}}{6}g
Calculate 1 to the power of 1 and get 1.
\frac{2174}{5}g-\frac{2^{5}}{6}g
Combine \frac{4349}{10}g and -\frac{1}{10}g to get \frac{2174}{5}g.
\frac{2174}{5}g-\frac{32}{6}g
Calculate 2 to the power of 5 and get 32.
\frac{2174}{5}g-\frac{16}{3}g
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\frac{6442}{15}g
Combine \frac{2174}{5}g and -\frac{16}{3}g to get \frac{6442}{15}g.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{6561}{15}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Calculate 3 to the power of 8 and get 6561.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2187}{5}g-\frac{5^{1}}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Reduce the fraction \frac{6561}{15} to lowest terms by extracting and canceling out 3.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2187}{5}g-\frac{5}{2}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Calculate 5 to the power of 1 and get 5.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{4349}{10}g-\frac{1^{1}}{10}g-\frac{2^{5}}{6}g)
Combine \frac{2187}{5}g and -\frac{5}{2}g to get \frac{4349}{10}g.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{4349}{10}g-\frac{1}{10}g-\frac{2^{5}}{6}g)
Calculate 1 to the power of 1 and get 1.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2174}{5}g-\frac{2^{5}}{6}g)
Combine \frac{4349}{10}g and -\frac{1}{10}g to get \frac{2174}{5}g.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2174}{5}g-\frac{32}{6}g)
Calculate 2 to the power of 5 and get 32.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{2174}{5}g-\frac{16}{3}g)
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{6442}{15}g)
Combine \frac{2174}{5}g and -\frac{16}{3}g to get \frac{6442}{15}g.
\frac{6442}{15}g^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{6442}{15}g^{0}
Subtract 1 from 1.
\frac{6442}{15}\times 1
For any term t except 0, t^{0}=1.
\frac{6442}{15}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}