Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

81+b^{2}=6^{4}
Calculate 3 to the power of 4 and get 81.
81+b^{2}=1296
Calculate 6 to the power of 4 and get 1296.
b^{2}=1296-81
Subtract 81 from both sides.
b^{2}=1215
Subtract 81 from 1296 to get 1215.
b=9\sqrt{15} b=-9\sqrt{15}
Take the square root of both sides of the equation.
81+b^{2}=6^{4}
Calculate 3 to the power of 4 and get 81.
81+b^{2}=1296
Calculate 6 to the power of 4 and get 1296.
81+b^{2}-1296=0
Subtract 1296 from both sides.
-1215+b^{2}=0
Subtract 1296 from 81 to get -1215.
b^{2}-1215=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-1215\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -1215 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-1215\right)}}{2}
Square 0.
b=\frac{0±\sqrt{4860}}{2}
Multiply -4 times -1215.
b=\frac{0±18\sqrt{15}}{2}
Take the square root of 4860.
b=9\sqrt{15}
Now solve the equation b=\frac{0±18\sqrt{15}}{2} when ± is plus.
b=-9\sqrt{15}
Now solve the equation b=\frac{0±18\sqrt{15}}{2} when ± is minus.
b=9\sqrt{15} b=-9\sqrt{15}
The equation is now solved.