Solve for b
b=9\sqrt{15}\approx 34.856850116
b=-9\sqrt{15}\approx -34.856850116
Share
Copied to clipboard
81+b^{2}=6^{4}
Calculate 3 to the power of 4 and get 81.
81+b^{2}=1296
Calculate 6 to the power of 4 and get 1296.
b^{2}=1296-81
Subtract 81 from both sides.
b^{2}=1215
Subtract 81 from 1296 to get 1215.
b=9\sqrt{15} b=-9\sqrt{15}
Take the square root of both sides of the equation.
81+b^{2}=6^{4}
Calculate 3 to the power of 4 and get 81.
81+b^{2}=1296
Calculate 6 to the power of 4 and get 1296.
81+b^{2}-1296=0
Subtract 1296 from both sides.
-1215+b^{2}=0
Subtract 1296 from 81 to get -1215.
b^{2}-1215=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-1215\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -1215 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-1215\right)}}{2}
Square 0.
b=\frac{0±\sqrt{4860}}{2}
Multiply -4 times -1215.
b=\frac{0±18\sqrt{15}}{2}
Take the square root of 4860.
b=9\sqrt{15}
Now solve the equation b=\frac{0±18\sqrt{15}}{2} when ± is plus.
b=-9\sqrt{15}
Now solve the equation b=\frac{0±18\sqrt{15}}{2} when ± is minus.
b=9\sqrt{15} b=-9\sqrt{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}