Solve for x
x=3-\sqrt{6}\approx 0.550510257
x=\sqrt{6}+3\approx 5.449489743
Graph
Quiz
Quadratic Equation
5 problems similar to:
3 ^ { 2 } = ( \sqrt { 3 } ) ^ { 2 } + ( 3 - x ) ^ { 2 }
Share
Copied to clipboard
9=\left(\sqrt{3}\right)^{2}+\left(3-x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9=3+\left(3-x\right)^{2}
The square of \sqrt{3} is 3.
9=3+9-6x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
9=12-6x+x^{2}
Add 3 and 9 to get 12.
12-6x+x^{2}=9
Swap sides so that all variable terms are on the left hand side.
12-6x+x^{2}-9=0
Subtract 9 from both sides.
3-6x+x^{2}=0
Subtract 9 from 12 to get 3.
x^{2}-6x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{24}}{2}
Add 36 to -12.
x=\frac{-\left(-6\right)±2\sqrt{6}}{2}
Take the square root of 24.
x=\frac{6±2\sqrt{6}}{2}
The opposite of -6 is 6.
x=\frac{2\sqrt{6}+6}{2}
Now solve the equation x=\frac{6±2\sqrt{6}}{2} when ± is plus. Add 6 to 2\sqrt{6}.
x=\sqrt{6}+3
Divide 6+2\sqrt{6} by 2.
x=\frac{6-2\sqrt{6}}{2}
Now solve the equation x=\frac{6±2\sqrt{6}}{2} when ± is minus. Subtract 2\sqrt{6} from 6.
x=3-\sqrt{6}
Divide 6-2\sqrt{6} by 2.
x=\sqrt{6}+3 x=3-\sqrt{6}
The equation is now solved.
9=\left(\sqrt{3}\right)^{2}+\left(3-x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9=3+\left(3-x\right)^{2}
The square of \sqrt{3} is 3.
9=3+9-6x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
9=12-6x+x^{2}
Add 3 and 9 to get 12.
12-6x+x^{2}=9
Swap sides so that all variable terms are on the left hand side.
-6x+x^{2}=9-12
Subtract 12 from both sides.
-6x+x^{2}=-3
Subtract 12 from 9 to get -3.
x^{2}-6x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-6x+\left(-3\right)^{2}=-3+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-3+9
Square -3.
x^{2}-6x+9=6
Add -3 to 9.
\left(x-3\right)^{2}=6
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-3=\sqrt{6} x-3=-\sqrt{6}
Simplify.
x=\sqrt{6}+3 x=3-\sqrt{6}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}