Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9+\left(8x\right)^{2}=\left(17x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9+8^{2}x^{2}=\left(17x\right)^{2}
Expand \left(8x\right)^{2}.
9+64x^{2}=\left(17x\right)^{2}
Calculate 8 to the power of 2 and get 64.
9+64x^{2}=17^{2}x^{2}
Expand \left(17x\right)^{2}.
9+64x^{2}=289x^{2}
Calculate 17 to the power of 2 and get 289.
9+64x^{2}-289x^{2}=0
Subtract 289x^{2} from both sides.
9-225x^{2}=0
Combine 64x^{2} and -289x^{2} to get -225x^{2}.
-225x^{2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-9}{-225}
Divide both sides by -225.
x^{2}=\frac{1}{25}
Reduce the fraction \frac{-9}{-225} to lowest terms by extracting and canceling out -9.
x=\frac{1}{5} x=-\frac{1}{5}
Take the square root of both sides of the equation.
9+\left(8x\right)^{2}=\left(17x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9+8^{2}x^{2}=\left(17x\right)^{2}
Expand \left(8x\right)^{2}.
9+64x^{2}=\left(17x\right)^{2}
Calculate 8 to the power of 2 and get 64.
9+64x^{2}=17^{2}x^{2}
Expand \left(17x\right)^{2}.
9+64x^{2}=289x^{2}
Calculate 17 to the power of 2 and get 289.
9+64x^{2}-289x^{2}=0
Subtract 289x^{2} from both sides.
9-225x^{2}=0
Combine 64x^{2} and -289x^{2} to get -225x^{2}.
-225x^{2}+9=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-225\right)\times 9}}{2\left(-225\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -225 for a, 0 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-225\right)\times 9}}{2\left(-225\right)}
Square 0.
x=\frac{0±\sqrt{900\times 9}}{2\left(-225\right)}
Multiply -4 times -225.
x=\frac{0±\sqrt{8100}}{2\left(-225\right)}
Multiply 900 times 9.
x=\frac{0±90}{2\left(-225\right)}
Take the square root of 8100.
x=\frac{0±90}{-450}
Multiply 2 times -225.
x=-\frac{1}{5}
Now solve the equation x=\frac{0±90}{-450} when ± is plus. Reduce the fraction \frac{90}{-450} to lowest terms by extracting and canceling out 90.
x=\frac{1}{5}
Now solve the equation x=\frac{0±90}{-450} when ± is minus. Reduce the fraction \frac{-90}{-450} to lowest terms by extracting and canceling out 90.
x=-\frac{1}{5} x=\frac{1}{5}
The equation is now solved.