3 [ k ( x + 1 ) + b ] - 2 [ k ( x - 1 ) ) = 2 x + 17
Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{-2x+3b-17}{x+5}\text{, }&x\neq -5\\k\in \mathrm{C}\text{, }&x=-5\text{ and }b=\frac{7}{3}\end{matrix}\right.
Solve for b
b=\frac{17-5k+2x-kx}{3}
Solve for k
\left\{\begin{matrix}k=-\frac{-2x+3b-17}{x+5}\text{, }&x\neq -5\\k\in \mathrm{R}\text{, }&x=-5\text{ and }b=\frac{7}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
3\left(kx+k+b\right)-2k\left(x-1\right)=2x+17
Use the distributive property to multiply k by x+1.
3kx+3k+3b-2k\left(x-1\right)=2x+17
Use the distributive property to multiply 3 by kx+k+b.
3kx+3k+3b-2kx+2k=2x+17
Use the distributive property to multiply -2k by x-1.
kx+3k+3b+2k=2x+17
Combine 3kx and -2kx to get kx.
kx+5k+3b=2x+17
Combine 3k and 2k to get 5k.
kx+5k=2x+17-3b
Subtract 3b from both sides.
\left(x+5\right)k=2x+17-3b
Combine all terms containing k.
\left(x+5\right)k=2x-3b+17
The equation is in standard form.
\frac{\left(x+5\right)k}{x+5}=\frac{2x-3b+17}{x+5}
Divide both sides by x+5.
k=\frac{2x-3b+17}{x+5}
Dividing by x+5 undoes the multiplication by x+5.
3\left(kx+k+b\right)-2k\left(x-1\right)=2x+17
Use the distributive property to multiply k by x+1.
3kx+3k+3b-2k\left(x-1\right)=2x+17
Use the distributive property to multiply 3 by kx+k+b.
3kx+3k+3b=2x+17+2k\left(x-1\right)
Add 2k\left(x-1\right) to both sides.
3kx+3k+3b=2x+17+2kx-2k
Use the distributive property to multiply 2k by x-1.
3k+3b=2x+17+2kx-2k-3kx
Subtract 3kx from both sides.
3k+3b=2x+17-kx-2k
Combine 2kx and -3kx to get -kx.
3b=2x+17-kx-2k-3k
Subtract 3k from both sides.
3b=2x+17-kx-5k
Combine -2k and -3k to get -5k.
3b=17-5k+2x-kx
The equation is in standard form.
\frac{3b}{3}=\frac{17-5k+2x-kx}{3}
Divide both sides by 3.
b=\frac{17-5k+2x-kx}{3}
Dividing by 3 undoes the multiplication by 3.
3\left(kx+k+b\right)-2k\left(x-1\right)=2x+17
Use the distributive property to multiply k by x+1.
3kx+3k+3b-2k\left(x-1\right)=2x+17
Use the distributive property to multiply 3 by kx+k+b.
3kx+3k+3b-2kx+2k=2x+17
Use the distributive property to multiply -2k by x-1.
kx+3k+3b+2k=2x+17
Combine 3kx and -2kx to get kx.
kx+5k+3b=2x+17
Combine 3k and 2k to get 5k.
kx+5k=2x+17-3b
Subtract 3b from both sides.
\left(x+5\right)k=2x+17-3b
Combine all terms containing k.
\left(x+5\right)k=2x-3b+17
The equation is in standard form.
\frac{\left(x+5\right)k}{x+5}=\frac{2x-3b+17}{x+5}
Divide both sides by x+5.
k=\frac{2x-3b+17}{x+5}
Dividing by x+5 undoes the multiplication by x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}