Solve for v
v=-2
v=5
Share
Copied to clipboard
3v=vv-10
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by v.
3v=v^{2}-10
Multiply v and v to get v^{2}.
3v-v^{2}=-10
Subtract v^{2} from both sides.
3v-v^{2}+10=0
Add 10 to both sides.
-v^{2}+3v+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-3±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
Square 3.
v=\frac{-3±\sqrt{9+4\times 10}}{2\left(-1\right)}
Multiply -4 times -1.
v=\frac{-3±\sqrt{9+40}}{2\left(-1\right)}
Multiply 4 times 10.
v=\frac{-3±\sqrt{49}}{2\left(-1\right)}
Add 9 to 40.
v=\frac{-3±7}{2\left(-1\right)}
Take the square root of 49.
v=\frac{-3±7}{-2}
Multiply 2 times -1.
v=\frac{4}{-2}
Now solve the equation v=\frac{-3±7}{-2} when ± is plus. Add -3 to 7.
v=-2
Divide 4 by -2.
v=-\frac{10}{-2}
Now solve the equation v=\frac{-3±7}{-2} when ± is minus. Subtract 7 from -3.
v=5
Divide -10 by -2.
v=-2 v=5
The equation is now solved.
3v=vv-10
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by v.
3v=v^{2}-10
Multiply v and v to get v^{2}.
3v-v^{2}=-10
Subtract v^{2} from both sides.
-v^{2}+3v=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-v^{2}+3v}{-1}=-\frac{10}{-1}
Divide both sides by -1.
v^{2}+\frac{3}{-1}v=-\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
v^{2}-3v=-\frac{10}{-1}
Divide 3 by -1.
v^{2}-3v=10
Divide -10 by -1.
v^{2}-3v+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-3v+\frac{9}{4}=10+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
v^{2}-3v+\frac{9}{4}=\frac{49}{4}
Add 10 to \frac{9}{4}.
\left(v-\frac{3}{2}\right)^{2}=\frac{49}{4}
Factor v^{2}-3v+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
v-\frac{3}{2}=\frac{7}{2} v-\frac{3}{2}=-\frac{7}{2}
Simplify.
v=5 v=-2
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}