Solve for N
N=uv-3
Solve for u
\left\{\begin{matrix}u=\frac{N+3}{v}\text{, }&v\neq 0\\u\in \mathrm{R}\text{, }&N=-3\text{ and }v=0\end{matrix}\right.
Share
Copied to clipboard
uv-N=3
Swap sides so that all variable terms are on the left hand side.
-N=3-uv
Subtract uv from both sides.
\frac{-N}{-1}=\frac{3-uv}{-1}
Divide both sides by -1.
N=\frac{3-uv}{-1}
Dividing by -1 undoes the multiplication by -1.
N=uv-3
Divide -uv+3 by -1.
uv-N=3
Swap sides so that all variable terms are on the left hand side.
uv=3+N
Add N to both sides.
vu=N+3
The equation is in standard form.
\frac{vu}{v}=\frac{N+3}{v}
Divide both sides by v.
u=\frac{N+3}{v}
Dividing by v undoes the multiplication by v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}