Solve for x
x = \frac{\sqrt{29} + 5}{4} \approx 2.596291202
x=\frac{5-\sqrt{29}}{4}\approx -0.096291202
Graph
Share
Copied to clipboard
3=14x^{2}-35x-x\left(2x-5\right)
Use the distributive property to multiply 7x by 2x-5.
3=14x^{2}-35x-\left(2x^{2}-5x\right)
Use the distributive property to multiply x by 2x-5.
3=14x^{2}-35x-2x^{2}-\left(-5x\right)
To find the opposite of 2x^{2}-5x, find the opposite of each term.
3=14x^{2}-35x-2x^{2}+5x
The opposite of -5x is 5x.
3=12x^{2}-35x+5x
Combine 14x^{2} and -2x^{2} to get 12x^{2}.
3=12x^{2}-30x
Combine -35x and 5x to get -30x.
12x^{2}-30x=3
Swap sides so that all variable terms are on the left hand side.
12x^{2}-30x-3=0
Subtract 3 from both sides.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 12\left(-3\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -30 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 12\left(-3\right)}}{2\times 12}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-48\left(-3\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-30\right)±\sqrt{900+144}}{2\times 12}
Multiply -48 times -3.
x=\frac{-\left(-30\right)±\sqrt{1044}}{2\times 12}
Add 900 to 144.
x=\frac{-\left(-30\right)±6\sqrt{29}}{2\times 12}
Take the square root of 1044.
x=\frac{30±6\sqrt{29}}{2\times 12}
The opposite of -30 is 30.
x=\frac{30±6\sqrt{29}}{24}
Multiply 2 times 12.
x=\frac{6\sqrt{29}+30}{24}
Now solve the equation x=\frac{30±6\sqrt{29}}{24} when ± is plus. Add 30 to 6\sqrt{29}.
x=\frac{\sqrt{29}+5}{4}
Divide 30+6\sqrt{29} by 24.
x=\frac{30-6\sqrt{29}}{24}
Now solve the equation x=\frac{30±6\sqrt{29}}{24} when ± is minus. Subtract 6\sqrt{29} from 30.
x=\frac{5-\sqrt{29}}{4}
Divide 30-6\sqrt{29} by 24.
x=\frac{\sqrt{29}+5}{4} x=\frac{5-\sqrt{29}}{4}
The equation is now solved.
3=14x^{2}-35x-x\left(2x-5\right)
Use the distributive property to multiply 7x by 2x-5.
3=14x^{2}-35x-\left(2x^{2}-5x\right)
Use the distributive property to multiply x by 2x-5.
3=14x^{2}-35x-2x^{2}-\left(-5x\right)
To find the opposite of 2x^{2}-5x, find the opposite of each term.
3=14x^{2}-35x-2x^{2}+5x
The opposite of -5x is 5x.
3=12x^{2}-35x+5x
Combine 14x^{2} and -2x^{2} to get 12x^{2}.
3=12x^{2}-30x
Combine -35x and 5x to get -30x.
12x^{2}-30x=3
Swap sides so that all variable terms are on the left hand side.
\frac{12x^{2}-30x}{12}=\frac{3}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{30}{12}\right)x=\frac{3}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{5}{2}x=\frac{3}{12}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{5}{2}x=\frac{1}{4}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{4}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{29}{16}
Add \frac{1}{4} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=\frac{29}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{29}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{29}}{4} x-\frac{5}{4}=-\frac{\sqrt{29}}{4}
Simplify.
x=\frac{\sqrt{29}+5}{4} x=\frac{5-\sqrt{29}}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}