Solve for t
t=\sqrt{22}+5\approx 9.69041576
t=5-\sqrt{22}\approx 0.30958424
Share
Copied to clipboard
3=48-4\left(2t-8\right)-\frac{1}{2}\times 6\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Multiply \frac{1}{2} and 8 to get 4.
3=48-8t+32-\frac{1}{2}\times 6\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Use the distributive property to multiply -4 by 2t-8.
3=80-8t-\frac{1}{2}\times 6\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Add 48 and 32 to get 80.
3=80-8t-3\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Multiply \frac{1}{2} and 6 to get 3.
3=80-8t-3t+18-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Use the distributive property to multiply -3 by t-6.
3=80-11t+18-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Combine -8t and -3t to get -11t.
3=98-11t-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Add 80 and 18 to get 98.
98-11t-\frac{1}{2}\left(14-t\right)\left(14-2t\right)=3
Swap sides so that all variable terms are on the left hand side.
98-11t-\frac{1}{2}\left(14-t\right)\left(14-2t\right)-3=0
Subtract 3 from both sides.
98-11t+\left(-7+\frac{1}{2}t\right)\left(14-2t\right)-3=0
Use the distributive property to multiply -\frac{1}{2} by 14-t.
98-11t-98+21t-t^{2}-3=0
Use the distributive property to multiply -7+\frac{1}{2}t by 14-2t and combine like terms.
-11t+21t-t^{2}-3=0
Subtract 98 from 98 to get 0.
10t-t^{2}-3=0
Combine -11t and 21t to get 10t.
-t^{2}+10t-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 10.
t=\frac{-10±\sqrt{100+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-10±\sqrt{100-12}}{2\left(-1\right)}
Multiply 4 times -3.
t=\frac{-10±\sqrt{88}}{2\left(-1\right)}
Add 100 to -12.
t=\frac{-10±2\sqrt{22}}{2\left(-1\right)}
Take the square root of 88.
t=\frac{-10±2\sqrt{22}}{-2}
Multiply 2 times -1.
t=\frac{2\sqrt{22}-10}{-2}
Now solve the equation t=\frac{-10±2\sqrt{22}}{-2} when ± is plus. Add -10 to 2\sqrt{22}.
t=5-\sqrt{22}
Divide -10+2\sqrt{22} by -2.
t=\frac{-2\sqrt{22}-10}{-2}
Now solve the equation t=\frac{-10±2\sqrt{22}}{-2} when ± is minus. Subtract 2\sqrt{22} from -10.
t=\sqrt{22}+5
Divide -10-2\sqrt{22} by -2.
t=5-\sqrt{22} t=\sqrt{22}+5
The equation is now solved.
3=48-4\left(2t-8\right)-\frac{1}{2}\times 6\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Multiply \frac{1}{2} and 8 to get 4.
3=48-8t+32-\frac{1}{2}\times 6\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Use the distributive property to multiply -4 by 2t-8.
3=80-8t-\frac{1}{2}\times 6\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Add 48 and 32 to get 80.
3=80-8t-3\left(t-6\right)-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Multiply \frac{1}{2} and 6 to get 3.
3=80-8t-3t+18-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Use the distributive property to multiply -3 by t-6.
3=80-11t+18-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Combine -8t and -3t to get -11t.
3=98-11t-\frac{1}{2}\left(14-t\right)\left(14-2t\right)
Add 80 and 18 to get 98.
98-11t-\frac{1}{2}\left(14-t\right)\left(14-2t\right)=3
Swap sides so that all variable terms are on the left hand side.
98-11t+\left(-7+\frac{1}{2}t\right)\left(14-2t\right)=3
Use the distributive property to multiply -\frac{1}{2} by 14-t.
98-11t-98+21t-t^{2}=3
Use the distributive property to multiply -7+\frac{1}{2}t by 14-2t and combine like terms.
-11t+21t-t^{2}=3
Subtract 98 from 98 to get 0.
10t-t^{2}=3
Combine -11t and 21t to get 10t.
-t^{2}+10t=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-t^{2}+10t}{-1}=\frac{3}{-1}
Divide both sides by -1.
t^{2}+\frac{10}{-1}t=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-10t=\frac{3}{-1}
Divide 10 by -1.
t^{2}-10t=-3
Divide 3 by -1.
t^{2}-10t+\left(-5\right)^{2}=-3+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-10t+25=-3+25
Square -5.
t^{2}-10t+25=22
Add -3 to 25.
\left(t-5\right)^{2}=22
Factor t^{2}-10t+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-5\right)^{2}}=\sqrt{22}
Take the square root of both sides of the equation.
t-5=\sqrt{22} t-5=-\sqrt{22}
Simplify.
t=\sqrt{22}+5 t=5-\sqrt{22}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}