Solve for x
x=\frac{2}{3}\approx 0.666666667
x=5
Graph
Share
Copied to clipboard
3\left(x-2\right)\left(x-1\right)=2\left(x+1\right)+6\left(x-1\right)\times 1
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of \left(x-1\right)\left(x-2\right),x-2.
\left(3x-6\right)\left(x-1\right)=2\left(x+1\right)+6\left(x-1\right)\times 1
Use the distributive property to multiply 3 by x-2.
3x^{2}-9x+6=2\left(x+1\right)+6\left(x-1\right)\times 1
Use the distributive property to multiply 3x-6 by x-1 and combine like terms.
3x^{2}-9x+6=2x+2+6\left(x-1\right)\times 1
Use the distributive property to multiply 2 by x+1.
3x^{2}-9x+6=2x+2+6\left(x-1\right)
Multiply 6 and 1 to get 6.
3x^{2}-9x+6=2x+2+6x-6
Use the distributive property to multiply 6 by x-1.
3x^{2}-9x+6=8x+2-6
Combine 2x and 6x to get 8x.
3x^{2}-9x+6=8x-4
Subtract 6 from 2 to get -4.
3x^{2}-9x+6-8x=-4
Subtract 8x from both sides.
3x^{2}-17x+6=-4
Combine -9x and -8x to get -17x.
3x^{2}-17x+6+4=0
Add 4 to both sides.
3x^{2}-17x+10=0
Add 6 and 4 to get 10.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 10}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -17 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 10}}{2\times 3}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 10}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-17\right)±\sqrt{289-120}}{2\times 3}
Multiply -12 times 10.
x=\frac{-\left(-17\right)±\sqrt{169}}{2\times 3}
Add 289 to -120.
x=\frac{-\left(-17\right)±13}{2\times 3}
Take the square root of 169.
x=\frac{17±13}{2\times 3}
The opposite of -17 is 17.
x=\frac{17±13}{6}
Multiply 2 times 3.
x=\frac{30}{6}
Now solve the equation x=\frac{17±13}{6} when ± is plus. Add 17 to 13.
x=5
Divide 30 by 6.
x=\frac{4}{6}
Now solve the equation x=\frac{17±13}{6} when ± is minus. Subtract 13 from 17.
x=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{2}{3}
The equation is now solved.
3\left(x-2\right)\left(x-1\right)=2\left(x+1\right)+6\left(x-1\right)\times 1
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of \left(x-1\right)\left(x-2\right),x-2.
\left(3x-6\right)\left(x-1\right)=2\left(x+1\right)+6\left(x-1\right)\times 1
Use the distributive property to multiply 3 by x-2.
3x^{2}-9x+6=2\left(x+1\right)+6\left(x-1\right)\times 1
Use the distributive property to multiply 3x-6 by x-1 and combine like terms.
3x^{2}-9x+6=2x+2+6\left(x-1\right)\times 1
Use the distributive property to multiply 2 by x+1.
3x^{2}-9x+6=2x+2+6\left(x-1\right)
Multiply 6 and 1 to get 6.
3x^{2}-9x+6=2x+2+6x-6
Use the distributive property to multiply 6 by x-1.
3x^{2}-9x+6=8x+2-6
Combine 2x and 6x to get 8x.
3x^{2}-9x+6=8x-4
Subtract 6 from 2 to get -4.
3x^{2}-9x+6-8x=-4
Subtract 8x from both sides.
3x^{2}-17x+6=-4
Combine -9x and -8x to get -17x.
3x^{2}-17x=-4-6
Subtract 6 from both sides.
3x^{2}-17x=-10
Subtract 6 from -4 to get -10.
\frac{3x^{2}-17x}{3}=-\frac{10}{3}
Divide both sides by 3.
x^{2}-\frac{17}{3}x=-\frac{10}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{10}{3}+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{10}{3}+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{169}{36}
Add -\frac{10}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{6}\right)^{2}=\frac{169}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{13}{6} x-\frac{17}{6}=-\frac{13}{6}
Simplify.
x=5 x=\frac{2}{3}
Add \frac{17}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}