3 = 1 / 3 ( 12 x ^ { 2 } - 48 x + 36
Solve for x
x=\frac{\sqrt{7}}{2}+2\approx 3.322875656
x=-\frac{\sqrt{7}}{2}+2\approx 0.677124344
Graph
Share
Copied to clipboard
3\times 3=12x^{2}-48x+36
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
9=12x^{2}-48x+36
Multiply 3 and 3 to get 9.
12x^{2}-48x+36=9
Swap sides so that all variable terms are on the left hand side.
12x^{2}-48x+36-9=0
Subtract 9 from both sides.
12x^{2}-48x+27=0
Subtract 9 from 36 to get 27.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 12\times 27}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -48 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 12\times 27}}{2\times 12}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-48\times 27}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-48\right)±\sqrt{2304-1296}}{2\times 12}
Multiply -48 times 27.
x=\frac{-\left(-48\right)±\sqrt{1008}}{2\times 12}
Add 2304 to -1296.
x=\frac{-\left(-48\right)±12\sqrt{7}}{2\times 12}
Take the square root of 1008.
x=\frac{48±12\sqrt{7}}{2\times 12}
The opposite of -48 is 48.
x=\frac{48±12\sqrt{7}}{24}
Multiply 2 times 12.
x=\frac{12\sqrt{7}+48}{24}
Now solve the equation x=\frac{48±12\sqrt{7}}{24} when ± is plus. Add 48 to 12\sqrt{7}.
x=\frac{\sqrt{7}}{2}+2
Divide 48+12\sqrt{7} by 24.
x=\frac{48-12\sqrt{7}}{24}
Now solve the equation x=\frac{48±12\sqrt{7}}{24} when ± is minus. Subtract 12\sqrt{7} from 48.
x=-\frac{\sqrt{7}}{2}+2
Divide 48-12\sqrt{7} by 24.
x=\frac{\sqrt{7}}{2}+2 x=-\frac{\sqrt{7}}{2}+2
The equation is now solved.
3\times 3=12x^{2}-48x+36
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
9=12x^{2}-48x+36
Multiply 3 and 3 to get 9.
12x^{2}-48x+36=9
Swap sides so that all variable terms are on the left hand side.
12x^{2}-48x=9-36
Subtract 36 from both sides.
12x^{2}-48x=-27
Subtract 36 from 9 to get -27.
\frac{12x^{2}-48x}{12}=-\frac{27}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{48}{12}\right)x=-\frac{27}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-4x=-\frac{27}{12}
Divide -48 by 12.
x^{2}-4x=-\frac{9}{4}
Reduce the fraction \frac{-27}{12} to lowest terms by extracting and canceling out 3.
x^{2}-4x+\left(-2\right)^{2}=-\frac{9}{4}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{9}{4}+4
Square -2.
x^{2}-4x+4=\frac{7}{4}
Add -\frac{9}{4} to 4.
\left(x-2\right)^{2}=\frac{7}{4}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{7}{4}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{7}}{2} x-2=-\frac{\sqrt{7}}{2}
Simplify.
x=\frac{\sqrt{7}}{2}+2 x=-\frac{\sqrt{7}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}