Solve for x
x=\frac{\sqrt{3}-3}{2}\approx -0.633974596
x=\frac{-\sqrt{3}-3}{2}\approx -2.366025404
Graph
Share
Copied to clipboard
-2x^{2}-6x=3
Swap sides so that all variable terms are on the left hand side.
-2x^{2}-6x-3=0
Subtract 3 from both sides.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-6\right)±\sqrt{36-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-\left(-6\right)±\sqrt{12}}{2\left(-2\right)}
Add 36 to -24.
x=\frac{-\left(-6\right)±2\sqrt{3}}{2\left(-2\right)}
Take the square root of 12.
x=\frac{6±2\sqrt{3}}{2\left(-2\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{3}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{3}+6}{-4}
Now solve the equation x=\frac{6±2\sqrt{3}}{-4} when ± is plus. Add 6 to 2\sqrt{3}.
x=\frac{-\sqrt{3}-3}{2}
Divide 6+2\sqrt{3} by -4.
x=\frac{6-2\sqrt{3}}{-4}
Now solve the equation x=\frac{6±2\sqrt{3}}{-4} when ± is minus. Subtract 2\sqrt{3} from 6.
x=\frac{\sqrt{3}-3}{2}
Divide 6-2\sqrt{3} by -4.
x=\frac{-\sqrt{3}-3}{2} x=\frac{\sqrt{3}-3}{2}
The equation is now solved.
-2x^{2}-6x=3
Swap sides so that all variable terms are on the left hand side.
\frac{-2x^{2}-6x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{6}{-2}\right)x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+3x=\frac{3}{-2}
Divide -6 by -2.
x^{2}+3x=-\frac{3}{2}
Divide 3 by -2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{3}{2}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{3}{2}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{3}{4}
Add -\frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{3}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{3}}{2} x+\frac{3}{2}=-\frac{\sqrt{3}}{2}
Simplify.
x=\frac{\sqrt{3}-3}{2} x=\frac{-\sqrt{3}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}