Solve for x
x = \frac{5 \sqrt{534577249} - 115465}{3} \approx 46.544411092
x=\frac{-5\sqrt{534577249}-115465}{3}\approx -77023.211077758
Graph
Share
Copied to clipboard
3\left(x-390\right)\left(x+300\right)=-\left(300+x\right)\times 340^{2}-\left(x-390\right)\times 340^{2}
Variable x cannot be equal to any of the values -300,390 since division by zero is not defined. Multiply both sides of the equation by \left(x-390\right)\left(x+300\right), the least common multiple of 390-x,300+x.
\left(3x-1170\right)\left(x+300\right)=-\left(300+x\right)\times 340^{2}-\left(x-390\right)\times 340^{2}
Use the distributive property to multiply 3 by x-390.
3x^{2}-270x-351000=-\left(300+x\right)\times 340^{2}-\left(x-390\right)\times 340^{2}
Use the distributive property to multiply 3x-1170 by x+300 and combine like terms.
3x^{2}-270x-351000=-\left(300+x\right)\times 115600-\left(x-390\right)\times 340^{2}
Calculate 340 to the power of 2 and get 115600.
3x^{2}-270x-351000=-115600\left(300+x\right)-\left(x-390\right)\times 340^{2}
Multiply -1 and 115600 to get -115600.
3x^{2}-270x-351000=-34680000-115600x-\left(x-390\right)\times 340^{2}
Use the distributive property to multiply -115600 by 300+x.
3x^{2}-270x-351000=-34680000-115600x-\left(x-390\right)\times 115600
Calculate 340 to the power of 2 and get 115600.
3x^{2}-270x-351000=-34680000-115600x-\left(115600x-45084000\right)
Use the distributive property to multiply x-390 by 115600.
3x^{2}-270x-351000=-34680000-115600x-115600x+45084000
To find the opposite of 115600x-45084000, find the opposite of each term.
3x^{2}-270x-351000=-34680000-231200x+45084000
Combine -115600x and -115600x to get -231200x.
3x^{2}-270x-351000=10404000-231200x
Add -34680000 and 45084000 to get 10404000.
3x^{2}-270x-351000-10404000=-231200x
Subtract 10404000 from both sides.
3x^{2}-270x-10755000=-231200x
Subtract 10404000 from -351000 to get -10755000.
3x^{2}-270x-10755000+231200x=0
Add 231200x to both sides.
3x^{2}+230930x-10755000=0
Combine -270x and 231200x to get 230930x.
x=\frac{-230930±\sqrt{230930^{2}-4\times 3\left(-10755000\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 230930 for b, and -10755000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-230930±\sqrt{53328664900-4\times 3\left(-10755000\right)}}{2\times 3}
Square 230930.
x=\frac{-230930±\sqrt{53328664900-12\left(-10755000\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-230930±\sqrt{53328664900+129060000}}{2\times 3}
Multiply -12 times -10755000.
x=\frac{-230930±\sqrt{53457724900}}{2\times 3}
Add 53328664900 to 129060000.
x=\frac{-230930±10\sqrt{534577249}}{2\times 3}
Take the square root of 53457724900.
x=\frac{-230930±10\sqrt{534577249}}{6}
Multiply 2 times 3.
x=\frac{10\sqrt{534577249}-230930}{6}
Now solve the equation x=\frac{-230930±10\sqrt{534577249}}{6} when ± is plus. Add -230930 to 10\sqrt{534577249}.
x=\frac{5\sqrt{534577249}-115465}{3}
Divide -230930+10\sqrt{534577249} by 6.
x=\frac{-10\sqrt{534577249}-230930}{6}
Now solve the equation x=\frac{-230930±10\sqrt{534577249}}{6} when ± is minus. Subtract 10\sqrt{534577249} from -230930.
x=\frac{-5\sqrt{534577249}-115465}{3}
Divide -230930-10\sqrt{534577249} by 6.
x=\frac{5\sqrt{534577249}-115465}{3} x=\frac{-5\sqrt{534577249}-115465}{3}
The equation is now solved.
3\left(x-390\right)\left(x+300\right)=-\left(300+x\right)\times 340^{2}-\left(x-390\right)\times 340^{2}
Variable x cannot be equal to any of the values -300,390 since division by zero is not defined. Multiply both sides of the equation by \left(x-390\right)\left(x+300\right), the least common multiple of 390-x,300+x.
\left(3x-1170\right)\left(x+300\right)=-\left(300+x\right)\times 340^{2}-\left(x-390\right)\times 340^{2}
Use the distributive property to multiply 3 by x-390.
3x^{2}-270x-351000=-\left(300+x\right)\times 340^{2}-\left(x-390\right)\times 340^{2}
Use the distributive property to multiply 3x-1170 by x+300 and combine like terms.
3x^{2}-270x-351000=-\left(300+x\right)\times 115600-\left(x-390\right)\times 340^{2}
Calculate 340 to the power of 2 and get 115600.
3x^{2}-270x-351000=-115600\left(300+x\right)-\left(x-390\right)\times 340^{2}
Multiply -1 and 115600 to get -115600.
3x^{2}-270x-351000=-34680000-115600x-\left(x-390\right)\times 340^{2}
Use the distributive property to multiply -115600 by 300+x.
3x^{2}-270x-351000=-34680000-115600x-\left(x-390\right)\times 115600
Calculate 340 to the power of 2 and get 115600.
3x^{2}-270x-351000=-34680000-115600x-\left(115600x-45084000\right)
Use the distributive property to multiply x-390 by 115600.
3x^{2}-270x-351000=-34680000-115600x-115600x+45084000
To find the opposite of 115600x-45084000, find the opposite of each term.
3x^{2}-270x-351000=-34680000-231200x+45084000
Combine -115600x and -115600x to get -231200x.
3x^{2}-270x-351000=10404000-231200x
Add -34680000 and 45084000 to get 10404000.
3x^{2}-270x-351000+231200x=10404000
Add 231200x to both sides.
3x^{2}+230930x-351000=10404000
Combine -270x and 231200x to get 230930x.
3x^{2}+230930x=10404000+351000
Add 351000 to both sides.
3x^{2}+230930x=10755000
Add 10404000 and 351000 to get 10755000.
\frac{3x^{2}+230930x}{3}=\frac{10755000}{3}
Divide both sides by 3.
x^{2}+\frac{230930}{3}x=\frac{10755000}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{230930}{3}x=3585000
Divide 10755000 by 3.
x^{2}+\frac{230930}{3}x+\left(\frac{115465}{3}\right)^{2}=3585000+\left(\frac{115465}{3}\right)^{2}
Divide \frac{230930}{3}, the coefficient of the x term, by 2 to get \frac{115465}{3}. Then add the square of \frac{115465}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{230930}{3}x+\frac{13332166225}{9}=3585000+\frac{13332166225}{9}
Square \frac{115465}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{230930}{3}x+\frac{13332166225}{9}=\frac{13364431225}{9}
Add 3585000 to \frac{13332166225}{9}.
\left(x+\frac{115465}{3}\right)^{2}=\frac{13364431225}{9}
Factor x^{2}+\frac{230930}{3}x+\frac{13332166225}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{115465}{3}\right)^{2}}=\sqrt{\frac{13364431225}{9}}
Take the square root of both sides of the equation.
x+\frac{115465}{3}=\frac{5\sqrt{534577249}}{3} x+\frac{115465}{3}=-\frac{5\sqrt{534577249}}{3}
Simplify.
x=\frac{5\sqrt{534577249}-115465}{3} x=\frac{-5\sqrt{534577249}-115465}{3}
Subtract \frac{115465}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}