Solve for x
x = \frac{340 \sqrt{115609} - 115600}{3} \approx 1.499970806
x=\frac{-340\sqrt{115609}-115600}{3}\approx -77068.166637472
Graph
Share
Copied to clipboard
3\left(x-340\right)\left(x+340\right)=-\left(340+x\right)\times 340^{2}-\left(x-340\right)\times 340^{2}
Variable x cannot be equal to any of the values -340,340 since division by zero is not defined. Multiply both sides of the equation by \left(x-340\right)\left(x+340\right), the least common multiple of 340-x,340+x.
\left(3x-1020\right)\left(x+340\right)=-\left(340+x\right)\times 340^{2}-\left(x-340\right)\times 340^{2}
Use the distributive property to multiply 3 by x-340.
3x^{2}-346800=-\left(340+x\right)\times 340^{2}-\left(x-340\right)\times 340^{2}
Use the distributive property to multiply 3x-1020 by x+340 and combine like terms.
3x^{2}-346800=-\left(340+x\right)\times 115600-\left(x-340\right)\times 340^{2}
Calculate 340 to the power of 2 and get 115600.
3x^{2}-346800=-115600\left(340+x\right)-\left(x-340\right)\times 340^{2}
Multiply -1 and 115600 to get -115600.
3x^{2}-346800=-39304000-115600x-\left(x-340\right)\times 340^{2}
Use the distributive property to multiply -115600 by 340+x.
3x^{2}-346800=-39304000-115600x-\left(x-340\right)\times 115600
Calculate 340 to the power of 2 and get 115600.
3x^{2}-346800=-39304000-115600x-\left(115600x-39304000\right)
Use the distributive property to multiply x-340 by 115600.
3x^{2}-346800=-39304000-115600x-115600x+39304000
To find the opposite of 115600x-39304000, find the opposite of each term.
3x^{2}-346800=-39304000-231200x+39304000
Combine -115600x and -115600x to get -231200x.
3x^{2}-346800=-231200x
Add -39304000 and 39304000 to get 0.
3x^{2}-346800+231200x=0
Add 231200x to both sides.
3x^{2}+231200x-346800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-231200±\sqrt{231200^{2}-4\times 3\left(-346800\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 231200 for b, and -346800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-231200±\sqrt{53453440000-4\times 3\left(-346800\right)}}{2\times 3}
Square 231200.
x=\frac{-231200±\sqrt{53453440000-12\left(-346800\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-231200±\sqrt{53453440000+4161600}}{2\times 3}
Multiply -12 times -346800.
x=\frac{-231200±\sqrt{53457601600}}{2\times 3}
Add 53453440000 to 4161600.
x=\frac{-231200±680\sqrt{115609}}{2\times 3}
Take the square root of 53457601600.
x=\frac{-231200±680\sqrt{115609}}{6}
Multiply 2 times 3.
x=\frac{680\sqrt{115609}-231200}{6}
Now solve the equation x=\frac{-231200±680\sqrt{115609}}{6} when ± is plus. Add -231200 to 680\sqrt{115609}.
x=\frac{340\sqrt{115609}-115600}{3}
Divide -231200+680\sqrt{115609} by 6.
x=\frac{-680\sqrt{115609}-231200}{6}
Now solve the equation x=\frac{-231200±680\sqrt{115609}}{6} when ± is minus. Subtract 680\sqrt{115609} from -231200.
x=\frac{-340\sqrt{115609}-115600}{3}
Divide -231200-680\sqrt{115609} by 6.
x=\frac{340\sqrt{115609}-115600}{3} x=\frac{-340\sqrt{115609}-115600}{3}
The equation is now solved.
3\left(x-340\right)\left(x+340\right)=-\left(340+x\right)\times 340^{2}-\left(x-340\right)\times 340^{2}
Variable x cannot be equal to any of the values -340,340 since division by zero is not defined. Multiply both sides of the equation by \left(x-340\right)\left(x+340\right), the least common multiple of 340-x,340+x.
\left(3x-1020\right)\left(x+340\right)=-\left(340+x\right)\times 340^{2}-\left(x-340\right)\times 340^{2}
Use the distributive property to multiply 3 by x-340.
3x^{2}-346800=-\left(340+x\right)\times 340^{2}-\left(x-340\right)\times 340^{2}
Use the distributive property to multiply 3x-1020 by x+340 and combine like terms.
3x^{2}-346800=-\left(340+x\right)\times 115600-\left(x-340\right)\times 340^{2}
Calculate 340 to the power of 2 and get 115600.
3x^{2}-346800=-115600\left(340+x\right)-\left(x-340\right)\times 340^{2}
Multiply -1 and 115600 to get -115600.
3x^{2}-346800=-39304000-115600x-\left(x-340\right)\times 340^{2}
Use the distributive property to multiply -115600 by 340+x.
3x^{2}-346800=-39304000-115600x-\left(x-340\right)\times 115600
Calculate 340 to the power of 2 and get 115600.
3x^{2}-346800=-39304000-115600x-\left(115600x-39304000\right)
Use the distributive property to multiply x-340 by 115600.
3x^{2}-346800=-39304000-115600x-115600x+39304000
To find the opposite of 115600x-39304000, find the opposite of each term.
3x^{2}-346800=-39304000-231200x+39304000
Combine -115600x and -115600x to get -231200x.
3x^{2}-346800=-231200x
Add -39304000 and 39304000 to get 0.
3x^{2}-346800+231200x=0
Add 231200x to both sides.
3x^{2}+231200x=346800
Add 346800 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+231200x}{3}=\frac{346800}{3}
Divide both sides by 3.
x^{2}+\frac{231200}{3}x=\frac{346800}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{231200}{3}x=115600
Divide 346800 by 3.
x^{2}+\frac{231200}{3}x+\left(\frac{115600}{3}\right)^{2}=115600+\left(\frac{115600}{3}\right)^{2}
Divide \frac{231200}{3}, the coefficient of the x term, by 2 to get \frac{115600}{3}. Then add the square of \frac{115600}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{231200}{3}x+\frac{13363360000}{9}=115600+\frac{13363360000}{9}
Square \frac{115600}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{231200}{3}x+\frac{13363360000}{9}=\frac{13364400400}{9}
Add 115600 to \frac{13363360000}{9}.
\left(x+\frac{115600}{3}\right)^{2}=\frac{13364400400}{9}
Factor x^{2}+\frac{231200}{3}x+\frac{13363360000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{115600}{3}\right)^{2}}=\sqrt{\frac{13364400400}{9}}
Take the square root of both sides of the equation.
x+\frac{115600}{3}=\frac{340\sqrt{115609}}{3} x+\frac{115600}{3}=-\frac{340\sqrt{115609}}{3}
Simplify.
x=\frac{340\sqrt{115609}-115600}{3} x=\frac{-340\sqrt{115609}-115600}{3}
Subtract \frac{115600}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}