Evaluate
\frac{135}{97}\approx 1.391752577
Factor
\frac{3 ^ {3} \cdot 5}{97} = 1\frac{38}{97} = 1.3917525773195876
Share
Copied to clipboard
\frac{3}{1+\frac{1}{3}\left(\frac{1}{4}\times 48-\frac{1}{10}\right)\times \frac{1}{3}-\frac{1}{6}}
Divide \frac{1}{4} by \frac{1}{48} by multiplying \frac{1}{4} by the reciprocal of \frac{1}{48}.
\frac{3}{1+\frac{1}{3}\left(\frac{48}{4}-\frac{1}{10}\right)\times \frac{1}{3}-\frac{1}{6}}
Multiply \frac{1}{4} and 48 to get \frac{48}{4}.
\frac{3}{1+\frac{1}{3}\left(12-\frac{1}{10}\right)\times \frac{1}{3}-\frac{1}{6}}
Divide 48 by 4 to get 12.
\frac{3}{1+\frac{1}{3}\left(\frac{120}{10}-\frac{1}{10}\right)\times \frac{1}{3}-\frac{1}{6}}
Convert 12 to fraction \frac{120}{10}.
\frac{3}{1+\frac{1}{3}\times \frac{120-1}{10}\times \frac{1}{3}-\frac{1}{6}}
Since \frac{120}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{1+\frac{1}{3}\times \frac{119}{10}\times \frac{1}{3}-\frac{1}{6}}
Subtract 1 from 120 to get 119.
\frac{3}{1+\frac{1\times 119}{3\times 10}\times \frac{1}{3}-\frac{1}{6}}
Multiply \frac{1}{3} times \frac{119}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{1+\frac{119}{30}\times \frac{1}{3}-\frac{1}{6}}
Do the multiplications in the fraction \frac{1\times 119}{3\times 10}.
\frac{3}{1+\frac{119\times 1}{30\times 3}-\frac{1}{6}}
Multiply \frac{119}{30} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{1+\frac{119}{90}-\frac{1}{6}}
Do the multiplications in the fraction \frac{119\times 1}{30\times 3}.
\frac{3}{\frac{90}{90}+\frac{119}{90}-\frac{1}{6}}
Convert 1 to fraction \frac{90}{90}.
\frac{3}{\frac{90+119}{90}-\frac{1}{6}}
Since \frac{90}{90} and \frac{119}{90} have the same denominator, add them by adding their numerators.
\frac{3}{\frac{209}{90}-\frac{1}{6}}
Add 90 and 119 to get 209.
\frac{3}{\frac{209}{90}-\frac{15}{90}}
Least common multiple of 90 and 6 is 90. Convert \frac{209}{90} and \frac{1}{6} to fractions with denominator 90.
\frac{3}{\frac{209-15}{90}}
Since \frac{209}{90} and \frac{15}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{\frac{194}{90}}
Subtract 15 from 209 to get 194.
\frac{3}{\frac{97}{45}}
Reduce the fraction \frac{194}{90} to lowest terms by extracting and canceling out 2.
3\times \frac{45}{97}
Divide 3 by \frac{97}{45} by multiplying 3 by the reciprocal of \frac{97}{45}.
\frac{3\times 45}{97}
Express 3\times \frac{45}{97} as a single fraction.
\frac{135}{97}
Multiply 3 and 45 to get 135.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}