Evaluate
\frac{242}{15}\approx 16.133333333
Factor
\frac{2 \cdot 11 ^ {2}}{3 \cdot 5} = 16\frac{2}{15} = 16.133333333333333
Share
Copied to clipboard
\frac{3\times 2}{5\times 9}+\frac{2}{5}+\frac{2}{5}\times 39
Multiply \frac{3}{5} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{45}+\frac{2}{5}+\frac{2}{5}\times 39
Do the multiplications in the fraction \frac{3\times 2}{5\times 9}.
\frac{2}{15}+\frac{2}{5}+\frac{2}{5}\times 39
Reduce the fraction \frac{6}{45} to lowest terms by extracting and canceling out 3.
\frac{2}{15}+\frac{6}{15}+\frac{2}{5}\times 39
Least common multiple of 15 and 5 is 15. Convert \frac{2}{15} and \frac{2}{5} to fractions with denominator 15.
\frac{2+6}{15}+\frac{2}{5}\times 39
Since \frac{2}{15} and \frac{6}{15} have the same denominator, add them by adding their numerators.
\frac{8}{15}+\frac{2}{5}\times 39
Add 2 and 6 to get 8.
\frac{8}{15}+\frac{2\times 39}{5}
Express \frac{2}{5}\times 39 as a single fraction.
\frac{8}{15}+\frac{78}{5}
Multiply 2 and 39 to get 78.
\frac{8}{15}+\frac{234}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{8}{15} and \frac{78}{5} to fractions with denominator 15.
\frac{8+234}{15}
Since \frac{8}{15} and \frac{234}{15} have the same denominator, add them by adding their numerators.
\frac{242}{15}
Add 8 and 234 to get 242.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}