Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{2}x^{2}-3x+\frac{3}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{3}{2}\times \frac{3}{2}}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -3 for b, and \frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{3}{2}\times \frac{3}{2}}}{2\times \frac{3}{2}}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-6\times \frac{3}{2}}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{-\left(-3\right)±\sqrt{9-9}}{2\times \frac{3}{2}}
Multiply -6 times \frac{3}{2}.
x=\frac{-\left(-3\right)±\sqrt{0}}{2\times \frac{3}{2}}
Add 9 to -9.
x=-\frac{-3}{2\times \frac{3}{2}}
Take the square root of 0.
x=\frac{3}{2\times \frac{3}{2}}
The opposite of -3 is 3.
x=\frac{3}{3}
Multiply 2 times \frac{3}{2}.
x=1
Divide 3 by 3.
\frac{3}{2}x^{2}-3x+\frac{3}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3}{2}x^{2}-3x+\frac{3}{2}-\frac{3}{2}=-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
\frac{3}{2}x^{2}-3x=-\frac{3}{2}
Subtracting \frac{3}{2} from itself leaves 0.
\frac{\frac{3}{2}x^{2}-3x}{\frac{3}{2}}=-\frac{\frac{3}{2}}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{3}{\frac{3}{2}}\right)x=-\frac{\frac{3}{2}}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}-2x=-\frac{\frac{3}{2}}{\frac{3}{2}}
Divide -3 by \frac{3}{2} by multiplying -3 by the reciprocal of \frac{3}{2}.
x^{2}-2x=-1
Divide -\frac{3}{2} by \frac{3}{2} by multiplying -\frac{3}{2} by the reciprocal of \frac{3}{2}.
x^{2}-2x+1=-1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0
Add -1 to 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-1=0 x-1=0
Simplify.
x=1 x=1
Add 1 to both sides of the equation.
x=1
The equation is now solved. Solutions are the same.