Solve for m
m=-2+\sqrt{2}i\approx -2+1.414213562i
m=-\sqrt{2}i-2\approx -2-1.414213562i
Quiz
Complex Number
5 problems similar to:
3 + m = - \frac { 1 } { 3 } m ^ { 2 } - \frac { 1 } { 3 } m + 1
Share
Copied to clipboard
3+m+\frac{1}{3}m^{2}=-\frac{1}{3}m+1
Add \frac{1}{3}m^{2} to both sides.
3+m+\frac{1}{3}m^{2}+\frac{1}{3}m=1
Add \frac{1}{3}m to both sides.
3+\frac{4}{3}m+\frac{1}{3}m^{2}=1
Combine m and \frac{1}{3}m to get \frac{4}{3}m.
3+\frac{4}{3}m+\frac{1}{3}m^{2}-1=0
Subtract 1 from both sides.
2+\frac{4}{3}m+\frac{1}{3}m^{2}=0
Subtract 1 from 3 to get 2.
\frac{1}{3}m^{2}+\frac{4}{3}m+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\frac{4}{3}±\sqrt{\left(\frac{4}{3}\right)^{2}-4\times \frac{1}{3}\times 2}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, \frac{4}{3} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-4\times \frac{1}{3}\times 2}}{2\times \frac{1}{3}}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-\frac{4}{3}\times 2}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
m=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-\frac{8}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times 2.
m=\frac{-\frac{4}{3}±\sqrt{-\frac{8}{9}}}{2\times \frac{1}{3}}
Add \frac{16}{9} to -\frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{-\frac{4}{3}±\frac{2\sqrt{2}i}{3}}{2\times \frac{1}{3}}
Take the square root of -\frac{8}{9}.
m=\frac{-\frac{4}{3}±\frac{2\sqrt{2}i}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
m=\frac{-4+2\sqrt{2}i}{\frac{2}{3}\times 3}
Now solve the equation m=\frac{-\frac{4}{3}±\frac{2\sqrt{2}i}{3}}{\frac{2}{3}} when ± is plus. Add -\frac{4}{3} to \frac{2i\sqrt{2}}{3}.
m=-2+\sqrt{2}i
Divide \frac{-4+2i\sqrt{2}}{3} by \frac{2}{3} by multiplying \frac{-4+2i\sqrt{2}}{3} by the reciprocal of \frac{2}{3}.
m=\frac{-2\sqrt{2}i-4}{\frac{2}{3}\times 3}
Now solve the equation m=\frac{-\frac{4}{3}±\frac{2\sqrt{2}i}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{2i\sqrt{2}}{3} from -\frac{4}{3}.
m=-\sqrt{2}i-2
Divide \frac{-4-2i\sqrt{2}}{3} by \frac{2}{3} by multiplying \frac{-4-2i\sqrt{2}}{3} by the reciprocal of \frac{2}{3}.
m=-2+\sqrt{2}i m=-\sqrt{2}i-2
The equation is now solved.
3+m+\frac{1}{3}m^{2}=-\frac{1}{3}m+1
Add \frac{1}{3}m^{2} to both sides.
3+m+\frac{1}{3}m^{2}+\frac{1}{3}m=1
Add \frac{1}{3}m to both sides.
3+\frac{4}{3}m+\frac{1}{3}m^{2}=1
Combine m and \frac{1}{3}m to get \frac{4}{3}m.
\frac{4}{3}m+\frac{1}{3}m^{2}=1-3
Subtract 3 from both sides.
\frac{4}{3}m+\frac{1}{3}m^{2}=-2
Subtract 3 from 1 to get -2.
\frac{1}{3}m^{2}+\frac{4}{3}m=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}m^{2}+\frac{4}{3}m}{\frac{1}{3}}=-\frac{2}{\frac{1}{3}}
Multiply both sides by 3.
m^{2}+\frac{\frac{4}{3}}{\frac{1}{3}}m=-\frac{2}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
m^{2}+4m=-\frac{2}{\frac{1}{3}}
Divide \frac{4}{3} by \frac{1}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{1}{3}.
m^{2}+4m=-6
Divide -2 by \frac{1}{3} by multiplying -2 by the reciprocal of \frac{1}{3}.
m^{2}+4m+2^{2}=-6+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+4m+4=-6+4
Square 2.
m^{2}+4m+4=-2
Add -6 to 4.
\left(m+2\right)^{2}=-2
Factor m^{2}+4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+2\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
m+2=\sqrt{2}i m+2=-\sqrt{2}i
Simplify.
m=-2+\sqrt{2}i m=-\sqrt{2}i-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}