Evaluate
\frac{274}{3}\approx 91.333333333
Factor
\frac{2 \cdot 137}{3} = 91\frac{1}{3} = 91.33333333333333
Share
Copied to clipboard
3+\frac{2}{3}\times 2-3+90
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
3+\frac{2\times 2}{3}-3+90
Express \frac{2}{3}\times 2 as a single fraction.
3+\frac{4}{3}-3+90
Multiply 2 and 2 to get 4.
\frac{9}{3}+\frac{4}{3}-3+90
Convert 3 to fraction \frac{9}{3}.
\frac{9+4}{3}-3+90
Since \frac{9}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{13}{3}-3+90
Add 9 and 4 to get 13.
\frac{13}{3}-\frac{9}{3}+90
Convert 3 to fraction \frac{9}{3}.
\frac{13-9}{3}+90
Since \frac{13}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{3}+90
Subtract 9 from 13 to get 4.
\frac{4}{3}+\frac{270}{3}
Convert 90 to fraction \frac{270}{3}.
\frac{4+270}{3}
Since \frac{4}{3} and \frac{270}{3} have the same denominator, add them by adding their numerators.
\frac{274}{3}
Add 4 and 270 to get 274.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}