Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-\frac{1}{2}x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{1}{2} for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times 2\times 3}}{2\times 2}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-8\times 3}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-24}}{2\times 2}
Multiply -8 times 3.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{95}{4}}}{2\times 2}
Add \frac{1}{4} to -24.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{95}i}{2}}{2\times 2}
Take the square root of -\frac{95}{4}.
x=\frac{\frac{1}{2}±\frac{\sqrt{95}i}{2}}{2\times 2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{\sqrt{95}i}{2}}{4}
Multiply 2 times 2.
x=\frac{1+\sqrt{95}i}{2\times 4}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{95}i}{2}}{4} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{95}}{2}.
x=\frac{1+\sqrt{95}i}{8}
Divide \frac{1+i\sqrt{95}}{2} by 4.
x=\frac{-\sqrt{95}i+1}{2\times 4}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{95}i}{2}}{4} when ± is minus. Subtract \frac{i\sqrt{95}}{2} from \frac{1}{2}.
x=\frac{-\sqrt{95}i+1}{8}
Divide \frac{1-i\sqrt{95}}{2} by 4.
x=\frac{1+\sqrt{95}i}{8} x=\frac{-\sqrt{95}i+1}{8}
The equation is now solved.
2x^{2}-\frac{1}{2}x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-\frac{1}{2}x+3-3=-3
Subtract 3 from both sides of the equation.
2x^{2}-\frac{1}{2}x=-3
Subtracting 3 from itself leaves 0.
\frac{2x^{2}-\frac{1}{2}x}{2}=-\frac{3}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{\frac{1}{2}}{2}\right)x=-\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{1}{4}x=-\frac{3}{2}
Divide -\frac{1}{2} by 2.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=-\frac{3}{2}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{3}{2}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{95}{64}
Add -\frac{3}{2} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=-\frac{95}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{-\frac{95}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{95}i}{8} x-\frac{1}{8}=-\frac{\sqrt{95}i}{8}
Simplify.
x=\frac{1+\sqrt{95}i}{8} x=\frac{-\sqrt{95}i+1}{8}
Add \frac{1}{8} to both sides of the equation.