Evaluate
\frac{107}{12}\approx 8.916666667
Factor
\frac{107}{2 ^ {2} \cdot 3} = 8\frac{11}{12} = 8.916666666666666
Share
Copied to clipboard
3+2\left(\frac{1}{2}\left(\frac{1}{3}+3\right)\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Cancel out 2 and 2.
3+2\left(\frac{1}{2}\left(\frac{1}{3}+\frac{9}{3}\right)\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Convert 3 to fraction \frac{9}{3}.
3+2\left(\frac{1}{2}\times \frac{1+9}{3}\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Since \frac{1}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
3+2\left(\frac{1}{2}\times \frac{10}{3}\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Add 1 and 9 to get 10.
3+2\left(\frac{1\times 10}{2\times 3}\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Multiply \frac{1}{2} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
3+2\left(\frac{10}{6}\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Do the multiplications in the fraction \frac{1\times 10}{2\times 3}.
3+2\left(\frac{5}{3}\times 2+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
3+2\left(\frac{5\times 2}{3}+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Express \frac{5}{3}\times 2 as a single fraction.
3+2\left(\frac{10}{3}+\left(\frac{1}{4}\right)^{2}\left(-2\right)\right)-2\times \frac{1}{4}
Multiply 5 and 2 to get 10.
3+2\left(\frac{10}{3}+\frac{1}{16}\left(-2\right)\right)-2\times \frac{1}{4}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
3+2\left(\frac{10}{3}+\frac{-2}{16}\right)-2\times \frac{1}{4}
Multiply \frac{1}{16} and -2 to get \frac{-2}{16}.
3+2\left(\frac{10}{3}-\frac{1}{8}\right)-2\times \frac{1}{4}
Reduce the fraction \frac{-2}{16} to lowest terms by extracting and canceling out 2.
3+2\left(\frac{80}{24}-\frac{3}{24}\right)-2\times \frac{1}{4}
Least common multiple of 3 and 8 is 24. Convert \frac{10}{3} and \frac{1}{8} to fractions with denominator 24.
3+2\times \frac{80-3}{24}-2\times \frac{1}{4}
Since \frac{80}{24} and \frac{3}{24} have the same denominator, subtract them by subtracting their numerators.
3+2\times \frac{77}{24}-2\times \frac{1}{4}
Subtract 3 from 80 to get 77.
3+\frac{2\times 77}{24}-2\times \frac{1}{4}
Express 2\times \frac{77}{24} as a single fraction.
3+\frac{154}{24}-2\times \frac{1}{4}
Multiply 2 and 77 to get 154.
3+\frac{77}{12}-2\times \frac{1}{4}
Reduce the fraction \frac{154}{24} to lowest terms by extracting and canceling out 2.
\frac{36}{12}+\frac{77}{12}-2\times \frac{1}{4}
Convert 3 to fraction \frac{36}{12}.
\frac{36+77}{12}-2\times \frac{1}{4}
Since \frac{36}{12} and \frac{77}{12} have the same denominator, add them by adding their numerators.
\frac{113}{12}-2\times \frac{1}{4}
Add 36 and 77 to get 113.
\frac{113}{12}+\frac{-2}{4}
Multiply -2 and \frac{1}{4} to get \frac{-2}{4}.
\frac{113}{12}-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{113}{12}-\frac{6}{12}
Least common multiple of 12 and 2 is 12. Convert \frac{113}{12} and \frac{1}{2} to fractions with denominator 12.
\frac{113-6}{12}
Since \frac{113}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{107}{12}
Subtract 6 from 113 to get 107.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}